Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

202,963 Full-Text Articles 246,472 Authors 47,230,550 Downloads 402 Institutions

All Articles in Physical Sciences and Mathematics

Faceted Search

202,963 full-text articles. Page 6 of 5538.

In Situ Investigation Of Magnetism In Metastable Phases Of Levitated Fe83b17 During Solidification, D. G. Quirinale, D. Messina, G. E. Rustan, Andreas Kreyssig, Ruslan Prozorov, Alan I. Goldman 2019 Iowa State University

In Situ Investigation Of Magnetism In Metastable Phases Of Levitated Fe83b17 During Solidification, D. G. Quirinale, D. Messina, G. E. Rustan, Andreas Kreyssig, Ruslan Prozorov, Alan I. Goldman

A. I. Goldman

In situ measurements of structure, density, and magnetization on samples of Fe83B17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe23B6/ fcc Fe coherently grown structures and primitive tetragonal Fe3B metastable phase in addition to characterizing the equilibrium Fe2B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.


Distinct Pressure Evolution Of Coupled Nematic And Magnetic Orders In Fese, Anna E. Böhmer, Karunakar Kothapalli, Wageesha T. Jayasekara, John M. Wilde, Bing Li, Aashish Sapkota, Benjamin G. Ueland, Pinaki Das, Yumin Xiao, Wenli Bi, Jiyong Zhao, E. Ercan Alp, Sergey L. Bud’ko, Paul C. Canfield, Alan I. Goldman, Andreas Kreyssig 2019 Ames Laboratory and Karlsruhe Institute of Technology

Distinct Pressure Evolution Of Coupled Nematic And Magnetic Orders In Fese, Anna E. Böhmer, Karunakar Kothapalli, Wageesha T. Jayasekara, John M. Wilde, Bing Li, Aashish Sapkota, Benjamin G. Ueland, Pinaki Das, Yumin Xiao, Wenli Bi, Jiyong Zhao, E. Ercan Alp, Sergey L. Bud’Ko, Paul C. Canfield, Alan I. Goldman, Andreas Kreyssig

A. I. Goldman

We present a microscopic study of nematicity and magnetism in FeSe over a wide temperature and pressure range using high-energy x-ray diffraction and time-domain Mössbauer spectroscopy. The low-temperature magnetic hyperfine field increases monotonically up to ∼ 6 GPa. The orthorhombic distortion initially decreases under increasing pressure but is stabilized at intermediate pressures by cooperative coupling to the pressure-induced magnetic order. Close to the reported maximum of the superconducting critical temperature at p = 6.8 GPa , the orthorhombic distortion suddenly disappears and a new tetragonal magnetic phase occurs. The pressure and temperature evolution of the structural and magnetic order parameters suggests that ...


Heisenberg Model Analysis On Inelastic Powder Neutron Scattering Data Using Parent And K Doped Bamn2as2 Samples, Mehmet Ramazanoglu, Aashish Sapkota, Abhishek Pandey, Jagat Lamsal, Douglas L. Abernathy, Jennifer L. Niedziela, Matthew B. Stone, R. Salci, D. A. Acar, F. O. Oztirpan, Şener Ozonder, Andreas Kreyssig, Alan I. Goldman, David C. Johnston, Robert J. McQueeney 2019 Istanbul Technical University

Heisenberg Model Analysis On Inelastic Powder Neutron Scattering Data Using Parent And K Doped Bamn2as2 Samples, Mehmet Ramazanoglu, Aashish Sapkota, Abhishek Pandey, Jagat Lamsal, Douglas L. Abernathy, Jennifer L. Niedziela, Matthew B. Stone, R. Salci, D. A. Acar, F. O. Oztirpan, Şener Ozonder, Andreas Kreyssig, Alan I. Goldman, David C. Johnston, Robert J. Mcqueeney

A. I. Goldman

Low temperature powder inelastic neutron scattering measurements were performed on three different powder samples; parent BaMn2As2,12.5% K-doped Ba0.875K0.125Mn2As2 and 25% K-doped Ba(0.75)K0.25Mn2As2. The Heisenberg Model involving J1‐J2‐Jz coupling constants were compared to the data by a powder integration routine using Monte Carlo integration methods. The best magnetic parameters were selected using a chi-square test where model intensities were compared to the full (q,E) dependence of magnetic scattering. A key step to this analysis is the characterization of the background which is formed mostly by phonon scattering intensities along with ...


Antiferromagnetic Stacking Of Ferromagnetic Layers And Doping-Controlled Phase Competition In Ca1−X Srx Co2−Y As2, Bing Li, Yuriy Sizyuk, Nediadath S. Sangeetha, John M. Wilde, Pinaki Das, W. Tian, David C. Johnston, Alan I. Goldman, Andreas Kreyssig, Peter P. Orth, Robert J. McQueeney, Benjamin G. Ueland 2019 Iowa State University and Ames Laboratory

Antiferromagnetic Stacking Of Ferromagnetic Layers And Doping-Controlled Phase Competition In Ca1−X Srx Co2−Y As2, Bing Li, Yuriy Sizyuk, Nediadath S. Sangeetha, John M. Wilde, Pinaki Das, W. Tian, David C. Johnston, Alan I. Goldman, Andreas Kreyssig, Peter P. Orth, Robert J. Mcqueeney, Benjamin G. Ueland

A. I. Goldman

In search of a quantum phase transition between the two-dimensional (2D) ferromagnetism of CaCo2−yAs2 and stripe-type antiferromagnetism in SrCo2 As2, we instead find evidence for 1D magnetic frustration between magnetic square Co layers. We present neutron-diffraction data for Ca1−x Srx Co2−y As2 that reveal a sequence of x -dependent magnetic transitions which involve different stacking of 2 D ferromagnetically aligned layers with different magnetic anisotropy. We explain the x-dependent changes to the magnetic order by utilizing classical analytical calculations of a 1D Heisenberg model where single-ion magnetic anisotropy and frustration of antiferromagnetic nearest- and next-nearest-layer exchange interactions ...


Crystal Growth, Microstructure, And Physical Properties Of Srmnsb2, Yong Liu, Tao Ma, Warren E. Straszheim, Farhan Islam, Brandt A. Jensen, Wei Tian, Thomas Heitmann, R. A. Rosenberg, John M. Wilde, Bing Li, Andreas Kreyssig, Alan I. Goldman, Benjamin G. Ueland, Robert J. McQueeney, David Vaknin 2019 Ames Laboratory

Crystal Growth, Microstructure, And Physical Properties Of Srmnsb2, Yong Liu, Tao Ma, Warren E. Straszheim, Farhan Islam, Brandt A. Jensen, Wei Tian, Thomas Heitmann, R. A. Rosenberg, John M. Wilde, Bing Li, Andreas Kreyssig, Alan I. Goldman, Benjamin G. Ueland, Robert J. Mcqueeney, David Vaknin

A. I. Goldman

We report on the crystal and magnetic structures and magnetic and transport properties of SrMnSb2 single crystals grown by the self-flux method. Magnetic susceptibility measurements reveal an antiferromagnetic (AFM) transition at TN=295(3) K. Above TN, the susceptibility slightly increases and forms a broad peak at T∼420 K, which is a typical feature of two-dimensional magnetic systems. Neutron diffraction measurements on single crystals confirm the previously reported C-type AFM structure below TN. Both de Haas-van Alphen (dHvA) and Shubnikov-de Haas (SdH) effects are observed in SrMnSb2 single crystals. Analysis of the oscillatory component by a Fourier transform shows ...


Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. McQueeney 2019 Iowa State University and Ames Laboratory

Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. Mcqueeney

A. I. Goldman

Whereas magnetic frustration is typically associated with local-moment magnets in special geometric arrangements, here we show that SrCo2As2 is a candidate for frustrated itinerant magnetism. Using inelastic neutron scattering (INS), we find that antiferromagnetic (AF) spin fluctuations develop in the square Co layers of SrCo2As2 below T approximate to 100 K centered at the stripe-type AF propagation vector of (1/2, 1/2), and that their development is concomitant with a suppression of the uniform magnetic susceptibility determined via magnetization measurements. We interpret this switch in spectral weight as signaling a temperature-induced crossover from an instability toward ferromagnetism ordering to ...


Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. McQueeney 2019 Iowa State University and Ames Laboratory

Competing Magnetic Phases And Itinerant Magnetic Frustration In Srco2 As2, Bing Li, Benjamin G. Ueland, W. T. Jayasekara, D. L. Abernathy, N. S. Sangeetha, David C. Johnston, Qing-Ping Ding, Yuji Furukawa, Peter P. Orth, Andreas Kreyssig, Alan I. Goldman, Robert J. Mcqueeney

Peter P. Orth

Whereas magnetic frustration is typically associated with local-moment magnets in special geometric arrangements, here we show that SrCo2As2 is a candidate for frustrated itinerant magnetism. Using inelastic neutron scattering (INS), we find that antiferromagnetic (AF) spin fluctuations develop in the square Co layers of SrCo2As2 below T approximate to 100 K centered at the stripe-type AF propagation vector of (1/2, 1/2), and that their development is concomitant with a suppression of the uniform magnetic susceptibility determined via magnetization measurements. We interpret this switch in spectral weight as signaling a temperature-induced crossover from an instability toward ferromagnetism ordering to ...


Skyrmions And Spirals In Mnsi Under Hydrostatic Pressure, L. J. Bannenberg, R. Sadykov, R. M. Dalgliesh, C. Goodway, Deborah L. Schlagel, Thomas A. Lograsso, P. Falus, E. Lelièvre-Berna, A. O. Leonov, C. Pappas 2019 Delft University of Technology

Skyrmions And Spirals In Mnsi Under Hydrostatic Pressure, L. J. Bannenberg, R. Sadykov, R. M. Dalgliesh, C. Goodway, Deborah L. Schlagel, Thomas A. Lograsso, P. Falus, E. Lelièvre-Berna, A. O. Leonov, C. Pappas

Thomas A. Lograsso

The archetype cubic chiral magnet MnSi is home to some of the most fascinating states in condensed matter, such as skyrmions and a non-Fermi-liquid behavior in conjunction with a topological Hall effect under hydrostatic pressure. Using small angle neutron scattering, we study the evolution of the helimagnetic, conical, and skyrmionic correlations with increasing hydrostatic pressure. We show that the helical propagation vector smoothly reorients from ⟨111⟩ to ⟨100⟩ at intermediate pressures. At higher pressures, above the critical pressure, the long-range helimagnetic order disappears at zero magnetic field. Nevertheless, skyrmion lattices and conical spirals form under magnetic fields, in a part ...


Skyrmions And Spirals In Mnsi Under Hydrostatic Pressure, L. J. Bannenberg, R. Sadykov, R. M. Dalgliesh, C. Goodway, Deborah L. Schlagel, Thomas A. Lograsso, P. Falus, E. Lelièvre-Berna, A. O. Leonov, C. Pappas 2019 Delft University of Technology

Skyrmions And Spirals In Mnsi Under Hydrostatic Pressure, L. J. Bannenberg, R. Sadykov, R. M. Dalgliesh, C. Goodway, Deborah L. Schlagel, Thomas A. Lograsso, P. Falus, E. Lelièvre-Berna, A. O. Leonov, C. Pappas

Deborah L. Schlagel

The archetype cubic chiral magnet MnSi is home to some of the most fascinating states in condensed matter, such as skyrmions and a non-Fermi-liquid behavior in conjunction with a topological Hall effect under hydrostatic pressure. Using small angle neutron scattering, we study the evolution of the helimagnetic, conical, and skyrmionic correlations with increasing hydrostatic pressure. We show that the helical propagation vector smoothly reorients from ⟨111⟩ to ⟨100⟩ at intermediate pressures. At higher pressures, above the critical pressure, the long-range helimagnetic order disappears at zero magnetic field. Nevertheless, skyrmion lattices and conical spirals form under magnetic fields, in a part ...


Distinct Pressure Evolution Of Coupled Nematic And Magnetic Orders In Fese, Anna E. Böhmer, Karunakar Kothapalli, Wageesha T. Jayasekara, John M. Wilde, Bing Li, Aashish Sapkota, Benjamin G. Ueland, Pinaki Das, Yumin Xiao, Wenli Bi, Jiyong Zhao, E. Ercan Alp, Sergey L. Bud’ko, Paul C. Canfield, Alan I. Goldman, Andreas Kreyssig 2019 Ames Laboratory and Karlsruhe Institute of Technology

Distinct Pressure Evolution Of Coupled Nematic And Magnetic Orders In Fese, Anna E. Böhmer, Karunakar Kothapalli, Wageesha T. Jayasekara, John M. Wilde, Bing Li, Aashish Sapkota, Benjamin G. Ueland, Pinaki Das, Yumin Xiao, Wenli Bi, Jiyong Zhao, E. Ercan Alp, Sergey L. Bud’Ko, Paul C. Canfield, Alan I. Goldman, Andreas Kreyssig

Paul C. Canfield

We present a microscopic study of nematicity and magnetism in FeSe over a wide temperature and pressure range using high-energy x-ray diffraction and time-domain Mössbauer spectroscopy. The low-temperature magnetic hyperfine field increases monotonically up to ∼ 6 GPa. The orthorhombic distortion initially decreases under increasing pressure but is stabilized at intermediate pressures by cooperative coupling to the pressure-induced magnetic order. Close to the reported maximum of the superconducting critical temperature at p = 6.8 GPa , the orthorhombic distortion suddenly disappears and a new tetragonal magnetic phase occurs. The pressure and temperature evolution of the structural and magnetic order parameters suggests that ...


Multiple Ferromagnetic Transitions And Structural Distortion In The Van Der Waals Ferromagnet Vi3 At Ambient And Finite Pressures, Elena Gati, Yuji Inagaki, Tai Kong, Robert J. Cava, Yuji Furukawa, Paul C. Canfield, Sergey L. Bud’ko 2019 Iowa State University and Ames Laboratory

Multiple Ferromagnetic Transitions And Structural Distortion In The Van Der Waals Ferromagnet Vi3 At Ambient And Finite Pressures, Elena Gati, Yuji Inagaki, Tai Kong, Robert J. Cava, Yuji Furukawa, Paul C. Canfield, Sergey L. Bud’Ko

Paul C. Canfield

We present a combined study of zero-field (51) V and I-127 NMR at ambient pressure and specific heat and magnetization measurements under pressure up to 2.08 GPa on bulk single crystals of the van der Waals ferromagnet VI3. At ambient pressure, our results consistently demonstrate that VI3 undergoes a structural transition at T-s approximate to 78 K, followed by two subsequent ferromagnetic transitions at T-FM1 approximate to 50 K and T-FM2 approximate to 36 K upon cooling. At lowest temperature (T < T-FM2), two magnetically ordered V sites exist, whereas only one magnetically ordered V site is observed for T-FM1 < T < T-FM2. Whereas T-FM1 is almost unaffected by external pressure, T-FM2 is highly responsive to pressure and merges with the T-FM1 line at p 0.6 GPa. At even higher pressures (p approximate to 1.25 GPa), the T-FM2 line merges with the structural transition at T-s which becomes moderately suppressed with p for p < 1.25 GPa. Taken together, our data point toward a complex magnetic structure and an interesting interplay of magnetic and structural degrees of freedom in VI3.


Effect Of Ni Doping On Vortex Pinning In Cak (Fe1−X Nix)4as4 Single Crystals, N. Haberkorn, Mingyu Xu, William R. Meier, J. Schmidt, Sergey L. Bud’ko, Paul C. Canfield 2019 Ames Laboratory and Centro Atómico Bariloche and Instituto Balseiro, CNEA

Effect Of Ni Doping On Vortex Pinning In Cak (Fe1−X Nix)4as4 Single Crystals, N. Haberkorn, Mingyu Xu, William R. Meier, J. Schmidt, Sergey L. Bud’Ko, Paul C. Canfield

Paul C. Canfield

We study the correlation between chemical composition and vortex dynamics in Ni-doped CaK(Fe1−xNix)4As4 (x=0, 0.015, 0.025, 0.03, and 0.05) single crystals by performing measurements of the critical current densities Jc and the flux creep rates S. The magnetic relaxation of all the crystals is well described by the collective creep theory. The samples display a glassy exponent μ within the predictions for vortex bundles in a weak pinning scenario and relatively small characteristic pinning energy (U0<100K). The undoped crystals display modest Jc values at low temperatures and high magnetic fields applied along the c axis. Jc(T) dependences at high fields display an unusual peak. The enhancement in Jc(T) matches with an increase in U0 and the appearance of a second peak in the magnetization. As Ni doping increases, whereas there is a monotonic decrease in Tc there is a nonmonotonic change in Jc. Initially Jc increases, reaching a maximum value for x=0.015, and then Jc decreases for x≥0.025. This change in Jc(x) is coincident with the onset of antiferromagnetic order. The magnetic field dependence of Jc(H) also manifests a change in behavior between these x values. The analysis of the vortex dynamics for small and intermediate magnetic fields shows a gradual evolution in the glassy exponent μ with Ni content, x. This implies that there is no appreciable change in the mechanism that determines the vortex relaxation.


United States Midwest Soil And Weather Conditions Influence Anaerobic Potentially Mineralizable Nitrogen, Jason D. Clark, Kristen S. Veum, Fabian G. Fernandez, James J. Camberato, Paul R. Carter, Richard B. Ferguson, David W. Franzen, Daniel E. Kaiser, Newell R. Kitchen, Carrie A.M. Laboski, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan 2019 South Dakota State University

United States Midwest Soil And Weather Conditions Influence Anaerobic Potentially Mineralizable Nitrogen, Jason D. Clark, Kristen S. Veum, Fabian G. Fernandez, James J. Camberato, Paul R. Carter, Richard B. Ferguson, David W. Franzen, Daniel E. Kaiser, Newell R. Kitchen, Carrie A.M. Laboski, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan

Jason Clark

Nitrogen provided to crops through mineralization is an important factor in N management guidelines. Understanding of the interactive effects of soil and weather conditions on N mineralization needs to be improved. Relationships between anaerobic potentially mineralizable N (PMNan) and soil and weather conditions were evaluated under the contrasting climates of eight US Midwestern states. Soil was sampled (0–30 cm) for PMNan analysis before pre-plant N application (PP0N) and at the V5 development stage from the pre-plant 0 (V50N) and 180 kg N ha−1 (V5180N) rates and incubated for 7, 14, and 28 d ...


Dental And Mandibular Anomalies In White-Tailed Deer (Odocoileus Virginianus) From Central Georgia, Patrick M. Powers, Alfred J. Mead 2019 Georgia College & State University

Dental And Mandibular Anomalies In White-Tailed Deer (Odocoileus Virginianus) From Central Georgia, Patrick M. Powers, Alfred J. Mead

Georgia Journal of Science

The frequency of dental and mandibular anomalies in free-ranging white-tailed deer in the southeastern United States is not well documented. Characteristic irregularities include supernumerary and missing teeth, malocclusion, root abscesses due to bacterial infections, and tooth or bone damage due to trauma. In the present study, we examined 778 white-tailed deer dentaries collected from the Piedmont National Wildlife Refuge in central Georgia. All dentaries were inspected for lesions, tooth irregularities, developmental anomalies, and other pathologies. Thirty-two dentaries (4.1%) displayed signs of dental or bone abnormalities. More abnormalities were associated with infection or injury (22/778, 2.8%) compared to ...


Complex Oscillatory Decrease With Size In Diffusivity Of {100}-Epitaxially Supported 3d Fcc Metal Nanoclusters, King C. Lai, James W. Evans 2019 Iowa State University and Ames Laboratory

Complex Oscillatory Decrease With Size In Diffusivity Of {100}-Epitaxially Supported 3d Fcc Metal Nanoclusters, King C. Lai, James W. Evans

Ames Laboratory Accepted Manuscripts

Diffusion and coalescence of supported 3D metal nanoclusters (NCs) leads to Smoluchowski Ripening (SR), a key pathway for catalyst degradation. Variation of the NC diffusion coefficient, DN, with size N (in atoms) controls SR kinetics. Traditionally, a form DN ∼ N−β was assumed consistent with mean-field analysis. However, KMC simulation of a stochastic model for diffusion of {100}-epitaxially supported fcc NCs mediated by surface diffusion reveals instead a complex oscillatory decrease of DN with N. Barriers for surface diffusion of metal atoms across and between facets, along step edges, etc., in this model are selected to accurately capture behavior ...


Mathematics Saves Lives: Models And Signals Enabling Medicine And Biology, Raina Robeva 2019 Randolph-Macon College

Mathematics Saves Lives: Models And Signals Enabling Medicine And Biology, Raina Robeva

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Human Mobility – Epidemiological Modeling Of Zika Virus Spread In A Caribbean Island: A System Dynamic Approach, Edilberto Arteaga 2019 Inter American University of Puerto Rico - Metro

Human Mobility – Epidemiological Modeling Of Zika Virus Spread In A Caribbean Island: A System Dynamic Approach, Edilberto Arteaga

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Analyzing Student Loan Debt Using Seir Compartmental Model Of Epidemiology, Kavya Ravishankar, Dr. Padmanabhan Seshaiyer 2019 George Mason University

Analyzing Student Loan Debt Using Seir Compartmental Model Of Epidemiology, Kavya Ravishankar, Dr. Padmanabhan Seshaiyer

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Latent Storm Factors And Their Indicators, Joy D'Andrea 2019 Illinois State University

Latent Storm Factors And Their Indicators, Joy D'Andrea

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


The Effects Of Excess Nutrients On Tri-Trophic Food Chains In The Aquatic Ecosystem, Lale Asik, Ming Chen, Angela Peace 2019 Department of Mathematics and Statistics, Texas Tech University, Lubbock, USA

The Effects Of Excess Nutrients On Tri-Trophic Food Chains In The Aquatic Ecosystem, Lale Asik, Ming Chen, Angela Peace

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Digital Commons powered by bepress