Open Access. Powered by Scholars. Published by Universities.®

Set Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

92 Full-Text Articles 64 Authors 24,251 Downloads 34 Institutions

All Articles in Set Theory

Faceted Search

92 full-text articles. Page 1 of 3.

Patterns, Symmetries, And Mathematical Structures In The Arts, Sarah C. DeLoach 2020 Georgia Southern University

Patterns, Symmetries, And Mathematical Structures In The Arts, Sarah C. Deloach

University Honors Program Theses

Mathematics is a discipline of academia that can be found everywhere in the world around us. Mathematicians and scientists are not the only people who need to be proficient in numbers. Those involved in social sciences and even the arts can benefit from a background in math. In fact, connections between mathematics and various forms of art have been discovered since as early as the fourth century BC. In this thesis we will study such connections and related concepts in mathematics, dances, and music.


Properties Of Functionally Alexandroff Topologies And Their Lattice, Jacob Scott Menix 2019 Western Kentucky University

Properties Of Functionally Alexandroff Topologies And Their Lattice, Jacob Scott Menix

Masters Theses & Specialist Projects

This thesis explores functionally Alexandroff topologies and the order theory asso- ciated when considering the collection of such topologies on some set X. We present several theorems about the properties of these topologies as well as their partially ordered set.

The first chapter introduces functionally Alexandroff topologies and motivates why this work is of interest to topologists. This chapter explains the historical context of this relatively new type of topology and how this work relates to previous work in topology. Chapter 2 presents several theorems describing properties of functionally Alexandroff topologies ad presents a characterization for the functionally Alexandroff topologies ...


Approximation Of Continuous Functions By Artificial Neural Networks, Zongliang Ji 2019 Union College - Schenectady, NY

Approximation Of Continuous Functions By Artificial Neural Networks, Zongliang Ji

Honors Theses

An artificial neural network is a biologically-inspired system that can be trained to perform computations. Recently, techniques from machine learning have trained neural networks to perform a variety of tasks. It can be shown that any continuous function can be approximated by an artificial neural network with arbitrary precision. This is known as the universal approximation theorem. In this thesis, we will introduce neural networks and one of the first versions of this theorem, due to Cybenko. He modeled artificial neural networks using sigmoidal functions and used tools from measure theory and functional analysis.


An Alternative Almost Sure Construction Of Gaussian Stochastic Processes In The L2([0,1]) Space, Kevin Chen 2019 Bowdoin College

An Alternative Almost Sure Construction Of Gaussian Stochastic Processes In The L2([0,1]) Space, Kevin Chen

Honors Projects

No abstract provided.


Computable Reducibility Of Equivalence Relations, Marcello Gianni Krakoff 2019 Boise State University

Computable Reducibility Of Equivalence Relations, Marcello Gianni Krakoff

Boise State University Theses and Dissertations

Computable reducibility of equivalence relations is a tool to compare the complexity of equivalence relations on natural numbers. Its use is important to those doing Borel equivalence relation theory, computability theory, and computable structure theory. In this thesis, we compare many naturally occurring equivalence relations with respect to computable reducibility. We will then define a jump operator on equivalence relations and study proprieties of this operation and its iteration. We will then apply this new jump operation by studying its effect on the isomorphism relations of well-founded computable trees.


Group Theoretical Analysis Of Arbitrarily Large, Colored Square Grids, Brett Ehrman 2019 University of Lynchburg

Group Theoretical Analysis Of Arbitrarily Large, Colored Square Grids, Brett Ehrman

Student Scholar Showcase

In this research, we examine n x n grids whose individual squares are each colored with one of k distinct colors. We seek a general formula for the number of colored grids that are distinct up to rotations, reflections, and color reversals. We examine the problem using a group theoretical approach. We define a specific group action that allows us to incorporate Burnside’s Lemma, which leads us to the desired general results


Experience Of A Noyce-Student Learning Assistant In An Inquiry-Based Learning Class, Melissa Riley 2019 University of Nebraska at Omaha

Experience Of A Noyce-Student Learning Assistant In An Inquiry-Based Learning Class, Melissa Riley

Student Research and Creative Activity Fair

This presentation refers to an undergraduate course called introduction to abstract mathematics at the University of Nebraska at Omaha. During the academic year 2017-2018, undergraduate, mathematics student Melissa Riley was a Noyce-student learning assistant for the Inquiry Based Learning (IBL) section of the course. She assisted the faculty-in-charge with all aspects of the course. These included: materials preparation, class organization, teamwork, class leading, presentations, and tutoring. This presentation shall address some examples of how the IBL approach can be used in this type of class including: the structure of the course, the activities and tasks performed by the students, learning ...


Some Intuition Behind Large Cardinal Axioms, Their Characterization, And Related Results, Philip A. White 2019 Virginia Commonwealth University

Some Intuition Behind Large Cardinal Axioms, Their Characterization, And Related Results, Philip A. White

Theses and Dissertations

We aim to explain the intuition behind several large cardinal axioms, give characterization theorems for these axioms, and then discuss a few of their properties. As a capstone, we hope to introduce a new large cardinal notion and give a similar characterization theorem of this new notion. Our new notion of near strong compactness was inspired by the similar notion of near supercompactness, due to Jason Schanker.


Elementary Set Theory, Richard P. Millspaugh 2018 University of North Dakota

Elementary Set Theory, Richard P. Millspaugh

Open Educational Resources

This text is appropriate for a course that introduces undergraduates to proofs. The material includes elementary symbolic logic, logical arguments, basic set theory, functions and relations, the real number system, and an introduction to cardinality. The text is intended to be readable for sophomore and better freshmen majoring in mathematics.

The source files for the text can be found at https://github.com/RPMillspaugh/SetTheory


Tutte-Equivalent Matroids, Maria Margarita Rocha 2018 California State University - San Bernardino

Tutte-Equivalent Matroids, Maria Margarita Rocha

Electronic Theses, Projects, and Dissertations

We begin by introducing matroids in the context of finite collections of vectors from a vector space over a specified field, where the notion of independence is linear independence. Then we will introduce the concept of a matroid invariant. Specifically, we will look at the Tutte polynomial, which is a well-defined two-variable invariant that can be used to determine differences and similarities between a collection of given matroids. The Tutte polynomial can tell us certain properties of a given matroid (such as the number of bases, independent sets, etc.) without the need to manually solve for them. Although the Tutte ...


Selective Strong Screenability, Isaac Joseph Coombs 2018 Boise State University

Selective Strong Screenability, Isaac Joseph Coombs

Boise State University Theses and Dissertations

Screenability and strong screenability were both introduced some sixty years ago by R.H. Bing in his paper Metrization of Topological Spaces. Since then, much work has been done in exploring selective screenability (the selective version of screenability). However, the corresponding selective version of strong screenability has been virtually ignored. In this paper we seek to remedy this oversight. It is found that a great deal of the proofs about selective screenability readily carry over to proofs for the analogous version for selective strong screenability. We give some examples of selective strongly screenable spaces with the primary example being Pol ...


The Structure Of Models Of Second-Order Set Theories, Kameryn J. Williams 2018 The Graduate Center, City University of New York

The Structure Of Models Of Second-Order Set Theories, Kameryn J. Williams

All Dissertations, Theses, and Capstone Projects

This dissertation is a contribution to the project of second-order set theory, which has seen a revival in recent years. The approach is to understand second-order set theory by studying the structure of models of second-order set theories. The main results are the following, organized by chapter. First, I investigate the poset of T-realizations of a fixed countable model of ZFC, where T is a reasonable second-order set theory such as GBC or KM, showing that it has a rich structure. In particular, every countable partial order embeds into this structure. Moreover, we can arrange so that these embedding preserve ...


Distributive Lattice Models Of The Type C One-Rowed Weyl Group Symmetric Functions, William Atkins 2018 Murray State University

Distributive Lattice Models Of The Type C One-Rowed Weyl Group Symmetric Functions, William Atkins

Murray State Theses and Dissertations

We present two families of diamond-colored distributive lattices – one known and one new – that we can show are models of the type C one-rowed Weyl symmetric functions. These lattices are constructed using certain sequences of positive integers that are visualized as filling the boxes of one-rowed partition diagrams. We show how natural orderings of these one-rowed tableaux produce our distributive lattices as sublattices of a more general object, and how a natural coloring of the edges of the associated order diagrams yields a certain diamond-coloring property. We show that each edge-colored lattice possesses a certain structure that is associated with ...


Introduction To Game Theory: A Discovery Approach, Jennifer Firkins Nordstrom 2018 Linfield College

Introduction To Game Theory: A Discovery Approach, Jennifer Firkins Nordstrom

Linfield Authors Book Gallery

Game theory is an excellent topic for a non-majors quantitative course as it develops mathematical models to understand human behavior in social, political, and economic settings. The variety of applications can appeal to a broad range of students. Additionally, students can learn mathematics through playing games, something many choose to do in their spare time! This text also includes an exploration of the ideas of game theory through the rich context of popular culture. It contains sections on applications of the concepts to popular culture. It suggests films, television shows, and novels with themes from game theory. The questions in ...


Transfinite Ordinal Arithmetic, James Roger Clark 2017 Governors State University

Transfinite Ordinal Arithmetic, James Roger Clark

All Student Theses

Following the literature from the origin of Set Theory in the late 19th century to more current times, an arithmetic of finite and transfinite ordinal numbers is outlined. The concept of a set is outlined and directed to the understanding that an ordinal, a special kind of number, is a particular kind of well-ordered set. From this, the idea of counting ordinals is introduced. With the fundamental notion of counting addressed: then addition, multiplication, and exponentiation are defined and developed by established fundamentals of Set Theory. Many known theorems are based upon this foundation. Ultimately, as part of the conclusion ...


Joint Laver Diamonds And Grounded Forcing Axioms, Miha Habič 2017 The Graduate Center, City University of New York

Joint Laver Diamonds And Grounded Forcing Axioms, Miha Habič

All Dissertations, Theses, and Capstone Projects

In chapter 1 a notion of independence for diamonds and Laver diamonds is investigated. A sequence of Laver diamonds for κ is joint if for any sequence of targets there is a single elementary embedding j with critical point κ such that each Laver diamond guesses its respective target via j. In the case of measurable cardinals (with similar results holding for (partially) supercompact cardinals) I show that a single Laver diamond for κ yields a joint sequence of length κ, and I give strict separation results for all larger lengths of joint sequences. Even though the principles get strictly ...


Classification Of Vertex-Transitive Structures, Stephanie Potter 2017 Boise State University

Classification Of Vertex-Transitive Structures, Stephanie Potter

Boise State University Theses and Dissertations

When one thinks of objects with a significant level of symmetry it is natural to expect there to be a simple classification. However, this leads to an interesting problem in that research has revealed the existence of highly symmetric objects which are very complex when considered within the framework of Borel complexity. The tension between these two seemingly contradictory notions leads to a wealth of natural questions which have yet to be answered.

Borel complexity theory is an area of logic where the relative complexities of classification problems are studied. Within this theory, we regard a classification problem as an ...


The Classification Problem For Models Of Zfc, Samuel Dworetzky 2017 Boise State University

The Classification Problem For Models Of Zfc, Samuel Dworetzky

Boise State University Theses and Dissertations

Models of ZFC are ubiquitous in modern day set theoretic research. There are many different constructions that produce countable models of ZFC via techniques such as forcing, ultraproducts, and compactness. The models that these techniques produce have many different characteristics; thus it is natural to ask whether or not models of ZFC are classifiable. We will answer this question by showing that models of ZFC are unclassifiable and have maximal complexity. The notions of complexity used in this thesis will be phrased in the language of Borel complexity theory.

In particular, we will show that the class of countable models ...


Combinatorial Polynomial Hirsch Conjecture, Sam Miller 2017 Harvey Mudd College

Combinatorial Polynomial Hirsch Conjecture, Sam Miller

HMC Senior Theses

The Hirsch Conjecture states that for a d-dimensional polytope with n facets, the diameter of the graph of the polytope is at most n-d. This conjecture was disproven in 2010 by Francisco Santos Leal. However, a polynomial bound in n and d on the diameter of a polytope may still exist. Finding a polynomial bound would provide a worst-case scenario runtime for the Simplex Method of Linear Programming. However working only with polytopes in higher dimensions can prove challenging, so other approaches are welcome. There are many equivalent formulations of the Hirsch Conjecture, one of which is the Combinatorial ...


The Density Topology On The Reals With Analogues On Other Spaces, Stuart Nygard 2016 Boise State University

The Density Topology On The Reals With Analogues On Other Spaces, Stuart Nygard

Boise State University Theses and Dissertations

A point x is a density point of a set A if all of the points except a measure zero set near to x are contained in A. In the usual topology on ℝ, a set is open if shrinking intervals around each point are eventually contained in the set. The density topology relaxes this requirement. A set is open in the density topology if for each point, the limit of the measure of A contained in shirking intervals to the measure of the shrinking intervals themselves is one. That is, for any point x and a small enough interval ...


Digital Commons powered by bepress