Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

1,433 Full-Text Articles 2,700 Authors 307,239 Downloads 100 Institutions

All Articles in Materials Chemistry

Faceted Search

1,433 full-text articles. Page 1 of 54.

A Diffraction Paradox: An Unusually Broad Diffraction Background Signals Ideal Graphene, Shen Chen, Michael Horn-von Hoegen, Patricia A. Thiel, Michael C. Tringides 2019 Iowa State University and Ames Laboratory

A Diffraction Paradox: An Unusually Broad Diffraction Background Signals Ideal Graphene, Shen Chen, Michael Horn-Von Hoegen, Patricia A. Thiel, Michael C. Tringides

Patricia A. Thiel

The realization of the unusual properties of 2-d materials requires the formation of large domains of single layer thickness, extending over the mesoscale. It is found that the formation of ideal graphene on SiC, contrary to textbook diffraction , is signaled by a strong bell-shaped-component (BSC) around the (00) and G(10), but not the SiC(10) spots.The BSC is also seen for graphene on metals, because single layer uniform graphene with large lateral size can also be grown. It is only seen by electron diffraction and not with X-ray or He-scattering experiments. Most likely it originates from the spatial ...


Homoleptic Trivalent Tris(Alkyl) Rare Earth Compounds, Aradhana Pindwal, KaKing Yan, Smita Patnaik, Bradley M. Schmidt, Arkady Ellern, Igor I. Slowing, Cheolbeom Bae, Aaron D. Sadow 2019 Iowa State University and Ames Laboratory

Homoleptic Trivalent Tris(Alkyl) Rare Earth Compounds, Aradhana Pindwal, Kaking Yan, Smita Patnaik, Bradley M. Schmidt, Arkady Ellern, Igor I. Slowing, Cheolbeom Bae, Aaron D. Sadow

Igor I. Slowing

Homoleptic tris(alkyl) rare earth complexes Ln{C(SiHMe2)(3)}(3) (Ln = La, 1a; Ce, 1b; Pr, 1c; Nd, 1d) are synthesized in high yield from LnI(3)THF(n) and 3 equiv of KC(SiHMe2)(3). X-ray diffraction studies reveal 1a-d are isostructural, pseudo-C-3-symmetric molecules that contain two secondary Li <- HSi interactions per alkyl ligand (six total). Spectroscopic assignments are supported by comparison with Ln{C(SiDMe2)(3)}(3) and DFT calculations. The Ln <- HSi and terminal SiH exchange rapidly on the NMR time scale at room temperature, but the two motifs are resolved at low temperature. Variable-temperature NMR studies provide activation parameters for the exchange process in la (Delta H-double dagger = 8.2(4) kcal.mol(-1); Delta S-double dagger = -1(2) cal.mol(-1)K(-1)) and 1a-d(9) (Delta H-double dagger = 7.7(3) kcal.mol(-1); Delta S-double dagger = -4(2) cal.mol(-1)K(-1)). Comparisons of lineshapes, rate constants, (k(H)/k(D)), and slopes of ln (k/T) vs 1/T plots for la and 1a-d(9) reveal that an inverse isotope effect dominates at low temperature. DFT calculations identify four low-energy intermediates containing five beta-Si-H -> Ln and one gamma-C-H -> Ln. The calculations also suggest the pathway for Ln <- HSi/SiH exchange involves rotation of a single C(SiHMe2)(3) ligand that is coordinated to the Ln center through the Ln-C bond and one secondary interaction. These robust organometallic compounds persist in solution and in the solid state up to 80 degrees C, providing potential for their use in a range of synthetic applications. For example, reactions of Ln{C(SiHMe2)(3)}(3) and ancillary proligands, such as bis-1,1-(4,4-dimethyl-2-oxazolinyl)ethane (HMeC(Ox(Me2))(2)) give {MeC(Ox(Me2))(2)}Ln{C(SiHMe2)(3)}(2), and reactions with disilazanes provide solvent-free lanthanoid tris(disilazides).


Homoleptic Trivalent Tris(Alkyl) Rare Earth Compounds, Aradhana Pindwal, KaKing Yan, Smita Patnaik, Bradley M. Schmidt, Arkady Ellern, Igor I. Slowing, Cheolbeom Bae, Aaron D. Sadow 2019 Iowa State University and Ames Laboratory

Homoleptic Trivalent Tris(Alkyl) Rare Earth Compounds, Aradhana Pindwal, Kaking Yan, Smita Patnaik, Bradley M. Schmidt, Arkady Ellern, Igor I. Slowing, Cheolbeom Bae, Aaron D. Sadow

Aaron D. Sadow

Homoleptic tris(alkyl) rare earth complexes Ln{C(SiHMe2)(3)}(3) (Ln = La, 1a; Ce, 1b; Pr, 1c; Nd, 1d) are synthesized in high yield from LnI(3)THF(n) and 3 equiv of KC(SiHMe2)(3). X-ray diffraction studies reveal 1a-d are isostructural, pseudo-C-3-symmetric molecules that contain two secondary Li <- HSi interactions per alkyl ligand (six total). Spectroscopic assignments are supported by comparison with Ln{C(SiDMe2)(3)}(3) and DFT calculations. The Ln <- HSi and terminal SiH exchange rapidly on the NMR time scale at room temperature, but the two motifs are resolved at low temperature. Variable-temperature NMR studies provide activation parameters for the exchange process in la (Delta H-double dagger = 8.2(4) kcal.mol(-1); Delta S-double dagger = -1(2) cal.mol(-1)K(-1)) and 1a-d(9) (Delta H-double dagger = 7.7(3) kcal.mol(-1); Delta S-double dagger = -4(2) cal.mol(-1)K(-1)). Comparisons of lineshapes, rate constants, (k(H)/k(D)), and slopes of ln (k/T) vs 1/T plots for la and 1a-d(9) reveal that an inverse isotope effect dominates at low temperature. DFT calculations identify four low-energy intermediates containing five beta-Si-H -> Ln and one gamma-C-H -> Ln. The calculations also suggest the pathway for Ln <- HSi/SiH exchange involves rotation of a single C(SiHMe2)(3) ligand that is coordinated to the Ln center through the Ln-C bond and one secondary interaction. These robust organometallic compounds persist in solution and in the solid state up to 80 degrees C, providing potential for their use in a range of synthetic applications. For example, reactions of Ln{C(SiHMe2)(3)}(3) and ancillary proligands, such as bis-1,1-(4,4-dimethyl-2-oxazolinyl)ethane (HMeC(Ox(Me2))(2)) give {MeC(Ox(Me2))(2)}Ln{C(SiHMe2)(3)}(2), and reactions with disilazanes provide solvent-free lanthanoid tris(disilazides).


Persistent Dopants And Phase Segregation In Organolead Mixed-Halide Perovskites, Bryan A. Rosales, Long Men, Sarah D. Cady, Michael P. Hanrahan, Aaron J. Rossini, Javier Vela 2019 Iowa State University

Persistent Dopants And Phase Segregation In Organolead Mixed-Halide Perovskites, Bryan A. Rosales, Long Men, Sarah D. Cady, Michael P. Hanrahan, Aaron J. Rossini, Javier Vela

Sarah Cady

Organolead mixed-halide perovskites such as CH3NH3PbX3–aX′a (X, X′ = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the true chemical speciation and ...


Cu2znsns4 Nanorods Doped With Tetrahedral, High Spin Transition Metal Ions: Mn2+, Co2+, And Ni2+, Michelle J. Thompson, Kyle J. Blakeney, Sarah D. Cady, Malinda D. Reichert, Joselyn Del Pilar-Albaladejo, Seth T. White, Javier Vela 2019 Iowa State University

Cu2znsns4 Nanorods Doped With Tetrahedral, High Spin Transition Metal Ions: Mn2+, Co2+, And Ni2+, Michelle J. Thompson, Kyle J. Blakeney, Sarah D. Cady, Malinda D. Reichert, Joselyn Del Pilar-Albaladejo, Seth T. White, Javier Vela

Sarah Cady

Because of its useful optoelectronic properties and the relative abundance of its elements, the quaternary semiconductor Cu2ZnSnS4 (CZTS) has garnered considerable interest in recent years. In this work, we dope divalent, high spin transition metal ions (M2+ = Mn2+, Co2+, Ni2+) into the tetrahedral Zn2+ sites of wurtzite CZTS nanorods. The resulting Cu2MxZn1–xSnS4 (CMTS) nanocrystals retain the hexagonal crystalline structure, elongated morphology, and broad visible light absorption profile of the undoped CZTS nanorods. Electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), and infrared (IR) spectroscopy help corroborate the composition and local ion environment of the doped nanocrystals ...


Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss 2019 The Graduate Center, City University of New York

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

All Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine ...


Synthesis And Characterization Of Multifunctional Transition Metal Oxide Nanoparticles Through A Modified Sol-Gel Method With Application In Energy Storage, Julien Lombardi 2019 The Graduate Center, City University of New York

Synthesis And Characterization Of Multifunctional Transition Metal Oxide Nanoparticles Through A Modified Sol-Gel Method With Application In Energy Storage, Julien Lombardi

All Dissertations, Theses, and Capstone Projects

The Synthesis of transition metal oxide nanoparticles has been studied in great detail over the many years. The most studied transition metal oxide nanoparticles are perovskites of the ABO3 stoichiometry (A and B = transition metal) and more recently double perovskite crystal structures of the AA’BO6 or A2BB’O6 stoichiometry due to the many different properties arising from the many different combinations of elements possible. These materials have proven potentially useful in many fields, but due to properties such as ferroelectricity and ferromagnetism, the desire to integrate these materials into electronics is ever growing. Many ...


Synthesis And Characterization Of Heteronuclear Inorganic Complexes For The Photodegradation Of Persistant Organic Pollutants, Matthew A. Moyet 2019 University of Maine

Synthesis And Characterization Of Heteronuclear Inorganic Complexes For The Photodegradation Of Persistant Organic Pollutants, Matthew A. Moyet

Electronic Theses and Dissertations

The focus of this thesis is to investigate the structural modification and characterization potential of common photocatalysts that have various uses for environmental remediation purposes. Pollution involving organic chemicals is one of the most common scenarios found in communities throughout the country. Efforts to rid contaminated drinking water supplies of these chemicals include physical and chemical filters, which have limited ability and efficacy. This lack of efficient filtration services has led to an increased demand for more effective treatment methods. Chemical species that react in the presence of light are known as photocatalysts and have been used in previous studies ...


Cobalt(Ii) Acyl Intermediates In Carbon–Carbon Bond Formation And Oxygenation, Regina R. Reinig, Ellie L. Fought, Arkady Ellern, Theresa L. Windus, Aaron D. Sadow 2019 Iowa State University and Ames Laboratory

Cobalt(Ii) Acyl Intermediates In Carbon–Carbon Bond Formation And Oxygenation, Regina R. Reinig, Ellie L. Fought, Arkady Ellern, Theresa L. Windus, Aaron D. Sadow

Aaron D. Sadow

The organocobalt scorpionate compounds ToMCoR (ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate; R = Bn, 1; CH2SiMe3, 2; Ph, 3; Et, 4; nBu, 5; Me, 6) react in carbonylation, oxidation, and carboxylation reactions via pathways that are distinctly influenced by the nature of the organometallic moiety. The compounds are prepared by reaction of ToMCoCl with the corresponding organolithium or organopotassium reagents. Compounds 1–6 were characterized by 8-line hyperfine coupling to cobalt in EPR spectra and solution phase magnetic measurements (μeff = 4–5μB) as containing a high-spin cobalt(II) center. The UV-Vis spectra revealed an intense diagnostic band at ...


Synthesis And Optical Properties Of Ordered-Vacancy Perovskite Cesium Bismuth Halide Nanocrystals, Rainie D. Nelson, Kalyan Santra, Y. Wang, Atefe Hadi, Jacob W. Petrich, Matthew G. Panthani 2019 Iowa State University

Synthesis And Optical Properties Of Ordered-Vacancy Perovskite Cesium Bismuth Halide Nanocrystals, Rainie D. Nelson, Kalyan Santra, Y. Wang, Atefe Hadi, Jacob W. Petrich, Matthew G. Panthani

Matthew Panthani

Perovskite-phase cesium bismuth halide (Cs3Bi2X9; X = Cl, Br, I) nanocrystals were synthesized using a hot-injection approach. These nanocrystals adopted ordered-vacancy perovskite crystal structures and demonstrated composition-tunable optical properties. Growth occurred by initial formation of Bi0 seeds, and morphology was controlled by precursor and seed concentration. The Cs3Bi2I9 nanocrystals demonstrated excellent stability under ambient conditions for several months. Contrary to previous reports, we find that photoluminescence originates from the precursor material as opposed to the Cs3Bi2X9 nanocrystals.


Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen 2019 Iowa State University

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen

Mechanical Engineering Publications

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made ...


Computational Study On Binding Of Naturally Occurring Aromatic And Cyclic Amino Acids With Graphene, Dalia Daggag 2019 Clark Atlanta University

Computational Study On Binding Of Naturally Occurring Aromatic And Cyclic Amino Acids With Graphene, Dalia Daggag

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

The knowledge on the conformations of amino acids is essential to understand the biochemical behaviors and physical properties of proteins. Comprehensive computational study is focused to understand the conformational landscape of three aromatic amino acids (AAAs): tryptophan, tyrosine, and phenylalanine. Three different density functionals (B3LYP, M06-2X and wB97X-D) were used with two basis sets of 6-31G(d) and 6-31+G(d,p) for geometry optimizations of the conformers of AAAs followed by the vibrational frequencies. The goal was to identify the right choice of density functional theory (DFT) level for conformational analysis of amino acids by comparing the computational data ...


Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen 2019 Iowa State University

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen

Carmen Gomes

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made ...


Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen 2019 Iowa State University

Stamped Multilayer Graphene Laminates For Disposable In-Field Electrodes: Application To Electrochemical Sensing Of Hydrogen Peroxide And Glucose, Loreen R. Stromberg, John A. Hondred, Delaney Sanborn, Deyny Mendivelso-Perez, Srikanthan Ramesh, Iris V. Rivero, Josh Kogot, Emily Smith, Carmen Gomes, Jonathan C. Claussen

Jonathan C. Claussen

A multi-step approach is described for the fabrication of multi-layer graphene-based electrodes without the need for ink binders or post-print annealing. Graphite and nanoplatelet graphene were chemically exfoliated using a modified Hummers’ method and the dried material was thermally expanded. Expanded materials were used in a 3D printed mold and stamp to create laminate electrodes on various substrates. The laminates were examined for potential sensing applications using model systems of peroxide (H2O2) and enzymatic glucose detection. Within the context of these two assay systems, platinum nanoparticle electrodeposition and oxygen plasma treatment were examined as methods for improving sensitivity. Electrodes made ...


Ba2si3p6: 1d Nonlinear Optical Material With Thermal Barrier Chains, Justin Mark, Jian Wang, Kui Wu, Jeane Gladys Lo, Shannon Lee, Kirill Kovnir 2019 Iowa State University and Ames Laboratory

Ba2si3p6: 1d Nonlinear Optical Material With Thermal Barrier Chains, Justin Mark, Jian Wang, Kui Wu, Jeane Gladys Lo, Shannon Lee, Kirill Kovnir

Ames Laboratory Accepted Manuscripts

A novel barium silicon phosphide was synthesized and characterized. Ba2Si3P6 crystallizes in the noncentrosymmetric space group Pna21 (No. 33) and exhibits a unique bonding connectivity in the Si–P polyanion not found in other compounds. The crystal structure is composed of SiP4 tetrahedra connected into one-dimensional double-tetrahedra chains through corner sharing, edge sharing, and covalent P–P bonds. Chains are surrounded by Ba cations to achieve an electron balance. The novel compound exhibits semiconducting properties with a calculated bandgap of 1.6 eV and experimental optical bandgap of 1.88 eV. The complex pseudo-one-dimensional structure manifests itself in the ...


Electropolymerization And Characterization Of Thin Film Dielectrics, Christopher White II 2019 University of Nebraska - Lincoln

Electropolymerization And Characterization Of Thin Film Dielectrics, Christopher White Ii

Student Research Projects, Dissertations, and Theses - Chemistry Department

Graphene is a two-dimensional allotrope of carbon, with several superlative properties, including high electron and hole conductivities, high tensile strength, and chemical robustness. Its chemical and physical properties make it attractive for in use in a myriad of applications, including transistors. However, graphene’s chemical inertness and its physical and electrical properties’ dependency on its conjugated structure make building composite materials with graphene difficult. In 2015, Lipatov, et. al. demonstrated that a film derived from electropolymerized phenol could be used as a dielectric layer on transistor devices fabricated from exfoliated graphene. This thesis extends that research, detailing experiments of phenol ...


Photoswitchable Self-Complementary Hydrogen Bond Arrays, Suendues Noori, James A. Wisner 2019 University of Western Ontario

Photoswitchable Self-Complementary Hydrogen Bond Arrays, Suendues Noori, James A. Wisner

Western Research Forum

Background: Photochromism is the reversible transformation of a chemical material to another form by the absorption of electromagnetic radiation (light), where the two metastable forms have distinct absorption spectra and other properties. Photochromism in materials allows for the switching of their function solely based on irradiation with light. Polymers are used frequently as the building blocks for materials as they are versatile, multifunctional, can carry charge and be processed by solution-based deposition methods. Supramolecular polymers share the same definition as polymers with the exception that they are held together by reversible and directional non-covalent interactions such as hydrogen bonds. Synthesizing ...


Development Of Bioorthogonal Molecular Tools On Gold Nanoparticles, Wilson Luo 2019 The University of Western Ontario

Development Of Bioorthogonal Molecular Tools On Gold Nanoparticles, Wilson Luo

Electronic Thesis and Dissertation Repository

This thesis describes the development of bioorthogonal chemical tools — originally designed to form bonds cleanly and selectively in living systems — on gold nanoparticles (AuNPs) as a model reactive nanomaterial template to showcase chemical modifications in a facile and robust manner. To achieve this goal, new methodologies to cleanly incorporate strained alkyne (SA) and cargo-bearing triarylphosphine derivatives onto AuNPs were developed. The protocols described herein provide well-defined reactive AuNP interfaces that undergo bioorthogonal bond-forming and breaking reactions cleanly, selectively, and rapidly to enable chemical tuning of their properties and function.

In order to circumvent the high reactivity of SAs, which hindered ...


Synthesis Of Germanium Nanocrystals From Solid-State Disproportionation Of A Chloride-Derived Germania Glass, Yujie Wang, Utkarsh Ramesh, Charles K. A. Nyamekye, Bradley J. Ryan, Rainie D. Nelson, Abdulla M. Alebri, Umar H. Hamdeh, Atefe Hadi, Emily A. Smith, Matthew G. Panthani 2019 Iowa State University

Synthesis Of Germanium Nanocrystals From Solid-State Disproportionation Of A Chloride-Derived Germania Glass, Yujie Wang, Utkarsh Ramesh, Charles K. A. Nyamekye, Bradley J. Ryan, Rainie D. Nelson, Abdulla M. Alebri, Umar H. Hamdeh, Atefe Hadi, Emily A. Smith, Matthew G. Panthani

Matthew Panthani

Germanium nanocrystals (Ge NCs) have potential to be used in several optoelectronic applications such as photodetectors and light-emitting diodes. Here, we report a solid-state route to synthesizing Ge NCs through thermal disproportionation of a germania (GeOX) glass, which was synthesized by hydrolyzing a GeCl2·dioxane complex. The GeOX glass synthesized in this manner was found to have residual Cl content. The process of nanocrystal nucleation and growth was monitored using powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Compared to existing solid-state routes for synthesizing colloidal Ge NCs, this approach requires fewer steps and is amenable ...


Improving The Stability And Monodispersity Of Layered Cesium Lead Iodide Perovskite Thin Films By Tuning Crystallization Dynamics, Atefe Hadi, Bradley J. Ryan, Rainie D. Nelson, Kalyan Santra, Fang-Yi Lin, Eric W. Cochran, Matthew G. Panthani 2019 Iowa State University

Improving The Stability And Monodispersity Of Layered Cesium Lead Iodide Perovskite Thin Films By Tuning Crystallization Dynamics, Atefe Hadi, Bradley J. Ryan, Rainie D. Nelson, Kalyan Santra, Fang-Yi Lin, Eric W. Cochran, Matthew G. Panthani

Matthew Panthani

Assembling halide perovskites into layered structures holds promise for addressing chemical and phase stability challenges; however, several other challenges need to be addressed to create efficient and stable halide perovskite devices. Layered halide perovskites (LHPs) suffer from broad distribution of layer thicknesses and bandgaps within thin films. Reducing polydispersity could substantially improve charge transport within LHP films and the performance of LHP-based solar cells. Herein, we focused on layering α-CsPbI3 ((C4H9NH3)2Csn-1PbnI3n+1) thin films. We found that (C4H9NH3)2Csn-1PbnI3n+1 with nominal layer thicknesses of n = 1, 2, 3, and 4 can be deposited at temperatures as low as ...


Digital Commons powered by bepress