Characterizing The Permanence And Stationary Distribution For A Family Of Malaria Stochastic Models, 2019 Virginia Commonwealth University

#### Characterizing The Permanence And Stationary Distribution For A Family Of Malaria Stochastic Models, Divine Wanduku

*Biology and Medicine Through Mathematics Conference*

No abstract provided.

Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, 2019 Laboratoire des Signaux et Syst`emes (L2S) CentraleSup´elec-CNRS-Universit´e Paris Sud, 3 rue Joliot- Curie 91192 Gif-sur-Yvette cedex, France.

#### Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu

*SIUE Faculty Research, Scholarship, and Creative Activity*

This paper presents a systematic method to analyse the stability of systems with single delay in which the coefficient polynomials of the characteristic equation depend on the delay. Such systems often arise in, for example, life science and engineering systems. A method to analyze such systems was presented by Beretta and Kuang in a 2002 paper, but with some very restrictive assumptions. This work extends their results to the general case with the exception of some degenerate cases. It is found that a much richer behavior is possible when the restrictive assumptions are removed. The interval of interest for the ...

Traffic Signal Consensus Control, 2019 Portland State University

#### Traffic Signal Consensus Control, Gerardo Lafferriere

*TREC Final Reports*

We introduce a model for traffic signal management based on network consensus control principles. The underlying principle in a consensus approach is that traffic signal cycles are adjusted in a distributed way so as to achieve desirable ratios of queue lengths throughout the street network. This approach tends to reduce traffic congestion due to queue saturation at any particular city block and it appears less susceptible to congestion due to unexpected traffic loads on the street grid. We developed simulation tools based on the MATLAB computing environment to analyze the use of the mathematical consensus approach to manage the signal ...

A Decentralized Network Consensus Control Approach For Urban Traffic Signal Optimization, 2019 Portland State University

#### A Decentralized Network Consensus Control Approach For Urban Traffic Signal Optimization, Gerardo Lafferriere

*TREC Project Briefs*

Automobile traffic congestion in urban areas is a worsening problem that comes with significant economic and social costs. This report offers a new approach to urban congestion management through traffic signal control.

Condensed Forms For Linear Port-Hamiltonian Descriptor Systems, 2019 Technische Universität Berlin

#### Condensed Forms For Linear Port-Hamiltonian Descriptor Systems, Lena Scholz

*Electronic Journal of Linear Algebra*

Motivated by the structure which arises in the port-Hamiltonian formulation of constraint dynamical systems, structure preserving condensed forms for skew-adjoint differential-algebraic equations (DAEs) are derived. Moreover, structure preserving condensed forms under constant rank assumptions for linear port-Hamiltonian differential-algebraic equations are developed. These condensed forms allow for the further analysis of the properties of port-Hamiltonian DAEs and to study, e.g., existence and uniqueness of solutions or to determine the index. It can be shown that under certain conditions for regular port-Hamiltonian DAEs the strangeness index is bounded by $\mu\leq1$.

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, 2018 Wojciech Budzianowski Consulting Services

#### Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

*Wojciech Budzianowski*

No abstract provided.

Discontinuity Propagation In Delay Differential-Algebraic Equations, 2018 Technische Universität Berlin

#### Discontinuity Propagation In Delay Differential-Algebraic Equations, Benjamin Unger

*Electronic Journal of Linear Algebra*

The propagation of primary discontinuities in initial value problems for linear delay differential-algebraic equations (DDAEs) is discussed. Based on the (quasi-) Weierstra{\ss} form for regular matrix pencils, a complete characterization of the different propagation types is given and algebraic criteria in terms of the matrices are developed. The analysis, which is based on the method of steps, takes into account all possible inhomogeneities and history functions and thus serves as a worst-case scenario. Moreover, it reveals possible hidden delays in the DDAE and allows to study exponential stability of the DDAE based on the spectral abscissa. The new classification ...

Structured Eigenvalue/Eigenvector Backward Errors Of Matrix Pencils Arising In Optimal Control, 2018 Technische Universitaet Berlin

#### Structured Eigenvalue/Eigenvector Backward Errors Of Matrix Pencils Arising In Optimal Control, Christian Mehl, Volker Mehrmann, Punit Sharma

*Electronic Journal of Linear Algebra*

Eigenvalue and eigenpair backward errors are computed for matrix pencils arising in optimal control. In particular, formulas for backward errors are developed that are obtained under block-structure-preserving and symmetry-structure-preserving perturbations. It is shown that these eigenvalue and eigenpair backward errors are sometimes significantly larger than the corresponding backward errors that are obtained under perturbations that ignore the special structure of the pencil.

Creating A Computational Tool To Simulate Vibration Control For Piezoelectric Devices, 2018 Western Kentucky University

#### Creating A Computational Tool To Simulate Vibration Control For Piezoelectric Devices, Ahmet Ozkan Ozer, Emma J. Moore

*Posters-at-the-Capitol*

Piezoelectric materials have the unique ability to convert electrical energy to mechanical vibrations and vice versa. This project takes a stab to develop a reliable computational tool to simulate the vibration control of a novel “partial differential equation” model for a piezoelectric device, which is designed by integrating electric conducting piezoelectric layers constraining a viscoelastic layer to provide an active and lightweight intelligent structure. Controlling unwanted vibrations on piezoelectric devices (or harvesting energy from ambient vibrations) through piezoelectric layers has been the major focus in cutting-edge engineering applications such as ultrasonic welders and inchworms. The corresponding mathematical models for piezoelectric ...

Using Canalization For The Control Of Discrete Networks, 2018 University of Kentucky

#### Using Canalization For The Control Of Discrete Networks, David Murrugarra

*Annual Symposium on Biomathematics and Ecology: Education and Research*

No abstract provided.

Identifying Combinatorially Symmetric Hidden Markov Models, 2018 Aberystwyth University

#### Identifying Combinatorially Symmetric Hidden Markov Models, Daniel Burgarth

*Electronic Journal of Linear Algebra*

A sufficient criterion for the unique parameter identification of combinatorially symmetric Hidden Markov Models, based on the structure of their transition matrix, is provided. If the observed states of the chain form a zero forcing set of the graph of the Markov model, then it is uniquely identifiable and an explicit reconstruction method is given.

On The Well-Posedness And Global Boundary Controllability Of A Nonlinear Beam Model, 2018 University of Nebraska - Lincoln

#### On The Well-Posedness And Global Boundary Controllability Of A Nonlinear Beam Model, Jessie Jamieson

*Dissertations, Theses, and Student Research Papers in Mathematics*

The theory of beams and plates has been long established due to works spanning many fields, and has been explored through many investigations of beam and plate mechanics, controls, stability, and the well-posedness of systems of equations governing the motions of plates and beams. Additionally, recent investigations of flutter phenomena by Dowell, Webster et al. have reignited interest into the mechanics and stability of nonlinear beams. In this thesis, we wish to revisit the seminal well-posedness results of Lagnese and Leugering for the one dimensional, nonlinear beam from their 1991 paper, "Uniform stabilization of a nonlinear beam by nonlinear boundary ...

On Some Ergodic Impulse Control Problems With Constraint, 2018 Wayne State University

#### On Some Ergodic Impulse Control Problems With Constraint, J. L. Menaldi, Maurice Robin

*Mathematics Faculty Research Publications*

This paper studies the impulse control of a general Markov process under the average (or ergodic) cost when the impulse instants are restricted to be the arrival times of an exogenous process, and this restriction is referred to as a constraint. A detailed setting is described, a characterization of the optimal cost is obtained as a solution of an HJB equation, and an optimal impulse control is identified.

Curve Tracking Control Under State Constraints And Uncertainties, 2018 Louisiana State University and Agricultural and Mechanical College

#### Curve Tracking Control Under State Constraints And Uncertainties, Robert Kelly Sizemore

*LSU Doctoral Dissertations*

We study a class of steering control problems for free-moving particles tracking a curve in the plane and also in a three-dimensional environment, which are central problems in robotics. In the two-dimensional case, we provide adaptive controllers for curve tracking under unknown curvatures and control uncertainty. The system dynamics include a nonlinear dependence on the curvature, and are coupled with an estimator for the unknown curvature to form the augmented error dynamics. This nonlinear dependence puts our curvature identification objective outside the scope of existing adaptive tracking and parameter identification results that were limited to cases where the unknown parameters ...

Backstepping And Sequential Predictors For Control Systems, 2018 Louisiana State University and Agricultural and Mechanical College

#### Backstepping And Sequential Predictors For Control Systems, Jerome Avery Weston

*LSU Doctoral Dissertations*

We provide new methods in mathematical control theory for two significant classes of control systems with time delays, based on backstepping and sequential prediction. Our bounded backstepping results ensure global asymptotic stability for partially linear systems with an arbitrarily large number of integrators. We also build sequential predictors for time-varying linear systems with time-varying delays in the control, sampling in the control, and time-varying measurement delays. Our bounded backstepping results are novel because of their use of converging-input-converging-state conditions, which make it possible to solve feedback stabilization problems under input delays and under boundedness conditions on the feedback control. Our ...

Near-Optimal Control Of Switched Systems With Continuous-Time Dynamics Using Approximate Dynamic Programming, 2018 Southern Methodist University

#### Near-Optimal Control Of Switched Systems With Continuous-Time Dynamics Using Approximate Dynamic Programming, Tohid Sardarmehni

*Mechanical Engineering Research Theses and Dissertations*

Optimal control is a control method which provides inputs that minimize a performance index subject to state or input constraints [58]. The existing solutions for finding the exact optimal control solution such as Pontryagin’s minimum principle and dynamic programming suffer from curse of dimensionality in high order dynamical systems. One remedy for this problem is finding near optimal solution instead of the exact optimal solution to avoid curse of dimensionality [31]. A method for finding the approximate optimal solution is through Approximate Dynamic Programming (ADP) methods which are discussed in the subsequent chapters.

In this dissertation, optimal switching in ...

Controllability And Observability Of The Discrete Fractional Linear State-Space Model, 2018 Western Kentucky University

#### Controllability And Observability Of The Discrete Fractional Linear State-Space Model, Duc M. Nguyen

*Masters Theses & Specialist Projects*

This thesis aims to investigate the *controllability *and *observability *of the discrete fractional linear time-invariant state-space model. First, we will establish key concepts and properties which are the tools necessary for our task. In the third chapter, we will discuss the discrete state-space model and set up the criteria for these two properties. Then, in the fourth chapter, we will attempt to apply these criteria to the discrete fractional model. The general flow of our objectives is as follows: we start with the first-order linear difference equation, move on to the discrete system, then the fractional difference equation, and finally ...

Rotordynamic Analysis Of Theoretical Models And Experimental Systems, 2018 California Polytechnic State University - San Luis Obispo

#### Rotordynamic Analysis Of Theoretical Models And Experimental Systems, Cameron R. Naugle, Cameron Rex Naugle

*Master's Theses and Project Reports*

This thesis is intended to provide fundamental information for the construction and

analysis of rotordynamic theoretical models, and their comparison the experimental

systems. Finite Element Method (FEM) is used to construct models using Timoshenko

beam elements with viscous and hysteretic internal damping. Eigenvalues

and eigenvectors of state space equations are used to perform stability analysis, produce

critical speed maps, and visualize mode shapes. Frequency domain analysis

of theoretical models is used to provide Bode diagrams and in experimental data

full spectrum cascade plots. Experimental and theoretical model analyses are used

to optimize the control algorithm for an Active Magnetic Bearing ...

Some Insights Into The Migration Of Double Imaginary Roots Under Small Deviation Of Two Parameters, 2018 Laboratoire des Signaux et Systèmes (L2S) CNRS-CentraleSupélec-Université Paris-Sud, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette cedex, France

#### Some Insights Into The Migration Of Double Imaginary Roots Under Small Deviation Of Two Parameters, Dina Alina Irofti, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu

*SIUE Faculty Research, Scholarship, and Creative Activity*

This paper studies the migration of double imaginary roots of the systems’ characteristic equation when two parameters are subjected to small deviations. The proposed approach covers a wide range of models. Under the least degeneracy assumptions, we found that the local stability crossing curve has a cusp at the point that corresponds to the double root, and it divides the neighborhood of this point into an S-sector and a G-sector. When the parameters move into the G-sector, one of the roots moves to the right halfplane, and the other moves to the left half-plane. When the parameters move into the ...

Communication Based Control For Dc Microgrids, 2018 CUNY City College

#### Communication Based Control For Dc Microgrids, Mahmoud S. Saleh, Yusef Esa, Ahmed Mohamed

*Publications and Research*

Centralized communication-based control is one of the main methods that can be implemented to achieve autonomous advanced energy management capabilities in DC microgrids. However, its major limitation is the fact that communication bandwidth and computation resources are limited in practical applications. This can be often improved by avoiding redundant communications and complex computations. In this paper, an autonomous communication-based hybrid state/event driven control scheme is proposed. This control scheme is hierarchical and heuristic, such that on the primary control level, it encompasses state-driven local controllers, and on the secondary control level, an event-driven MG centralized controller (MGCC) is used ...