Open Access. Powered by Scholars. Published by Universities.®

Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

295 Full-Text Articles 713 Authors 31,021 Downloads 57 Institutions

All Articles in Nanotechnology

Faceted Search

295 full-text articles. Page 1 of 15.

Synthesizing Galactose Modified Polymeric Nanoparticles For Biofilm Inhibition Of Pseudomonas Aeruginosa, Tyler R. Flockton 2019 Rowan University

Synthesizing Galactose Modified Polymeric Nanoparticles For Biofilm Inhibition Of Pseudomonas Aeruginosa, Tyler R. Flockton

Theses and Dissertations

Treating patients with antibiotics is becoming harder with the increase in antibiotic resistance. This is due to the widespread antibiotic use in clinical and agricultural settings. With antibiotic resistance outpacing new drugs making it to the market, developing new options to treat bacterial infections is and will be important. We created sugar modified nanoparticles to inhibit the biofilm formation of Pseudomonas aeruginosa.

P. aeruginosa is a gram-negative opportunistic pathogen that infects its host that has a compromised immune system. This makes it one of the most significant bacterial infection in hospitals. P. aeruginosa uses biofilms as an attack mechanism on ...


Characteristics Of Nanoparticles Emitted From Kanthal A1 And Nichrome Heaters Used In Electronic Cigarettes, Kaushal Arvind Prasad 2019 Purdue University

Characteristics Of Nanoparticles Emitted From Kanthal A1 And Nichrome Heaters Used In Electronic Cigarettes, Kaushal Arvind Prasad

The Journal of Purdue Undergraduate Research

No abstract provided.


Synthesis Of New Aliphatic Pseudo-Branched Polyester Co-Polymers For Biomedical Applications, Zachary Shaw 2019 Pittsburg State University

Synthesis Of New Aliphatic Pseudo-Branched Polyester Co-Polymers For Biomedical Applications, Zachary Shaw

Electronic Thesis Collection

In this study, a hyperbranched polyester co-polymer was designed using a proprietary monomer and diethylene glycol or triethylene glycol as monomers. The synthesis was carried out using standard melt polymerization technique and catalyzed by p-Tolulenesulfonic acid. The progress of the reaction was monitored with respect to time and negative pressure, with samples being subjected to standard characterization protocols. The resulting polymers were purified using the solvent precipitation method and characterized using various chromatographic and spectroscopic methods including GPC, MALDI-TOF, and NMR. We have observed polymers with a molecular weight of 29,643 kDa and 33,996 kDa, which is ideal ...


Behavioral Responses To Gold Nanoparticle Exposure And H2o2-Induced Oxidative Stress In Caenorhabditis Elegans, Rachel Pride, Ashley Wagner 2019 Depaul University

Behavioral Responses To Gold Nanoparticle Exposure And H2o2-Induced Oxidative Stress In Caenorhabditis Elegans, Rachel Pride, Ashley Wagner

DePaul Discoveries

Gold nanoparticles (AuNPs) have been utilized in many biomedical disciplines, most notably cancer therapy and drug delivery. Recent research suggests that with specific peptide manipulation, AuNPs can deliver drugs across the blood-brain barrier (BBB), allowing for treatment of neurodegeneration and other neurological afflictions. Neurodegeneration has been shown to be caused by oxidative stress. The present experiment aimed to assess the effects of AuNPs on C. elegans behavior that had undergone H2O2-induced oxidative stress. It was predicted that worms exposed to both H2O2 and AuNPs would have higher survival, mechanosensation, and thrashing rates than ...


A Robust Delivery System For Rna Therapeutics, Suleyman Bozal 2019 University of Connecticut

A Robust Delivery System For Rna Therapeutics, Suleyman Bozal

University Scholar Projects

The field of RNA therapeutics is currently undergoing both transformation and expansion. Specifically, research in lipid nanoparticle (LNP) based RNA therapeutics is gaining significant traction. Other research into mechanisms of gene regulation and manipulation, including siRNA and the CRISPR/Cas9 system have demonstrated the potential of RNA-based disease treatment. This work identifies a delivery system which can regulate expression of green fluorescent protein (GFP) in human embryonic kidney cells (HEK293) stably expressing GFP.

Analysis of siRNA-induced gene knockdown demonstrates that the current siRNA-LNP formulation is equally as effective as a commercially available transfection reagent, Lipofectamine RNAiMAX (RNAiMAX), which is designed ...


A Robust Delivery System For Rna Therapeutics, Suleyman Bozal 2019 University of Connecticut

A Robust Delivery System For Rna Therapeutics, Suleyman Bozal

Honors Scholar Theses

The field of RNA therapeutics is currently undergoing both transformation and expansion. Specifically, research in lipid nanoparticle (LNP) based RNA therapeutics is gaining significant traction. Other research into mechanisms of gene regulation and manipulation, including siRNA and the CRISPR/Cas9 system have demonstrated the potential of RNA-based disease treatment. This work identifies a delivery system which can regulate expression of green fluorescent protein (GFP) in human embryonic kidney cells (HEK293) stably expressing GFP.

Analysis of siRNA-induced gene knockdown demonstrates that the current siRNA-LNP formulation is equally as effective as a commercially available transfection reagent, Lipofectamine RNAiMAX (RNAiMAX), which is designed ...


Development Of Bar-Peptide Nanoparticles And Electrospun Fibers For The Prevention And Treatment Of Oral Biofilms., Mohamed Yehia Mahmoud 2019 University of Louisville

Development Of Bar-Peptide Nanoparticles And Electrospun Fibers For The Prevention And Treatment Of Oral Biofilms., Mohamed Yehia Mahmoud

Electronic Theses and Dissertations

Background: Periodontal diseases are globally prevalent inflammatory disorders that affect ~47% of U.S adults. Porphyromonas gingivalis (Pg) has been identified as a “keystone” pathogen that disrupts host-microbe homeostasis and contributes to the initiation and progression of periodontitis. Pg associates with oral streptococci in supragingival plaque and this interaction represents a potential target for therapeutic intervention. Previously our group developed a peptide (designated BAR), that potently inhibits Pg/Streptococcus gordonii (Sg) adherence in vitro and Pg virulence in a murine model of periodontitis. While efficacious, BAR (SspB Adherence Region) provided transient inhibition and required higher concentrations of BAR to disrupt ...


All-Optical Control Of Lead Halide Perovskite Microlasers, Nan Zhang, Yubin Fan, Kaiyang Wang, Zhiyuan Gu, Yuhan Wang, Li Ge, Shumin Xiao, Qinghai Song 2019 Harbin Institute of Technology

All-Optical Control Of Lead Halide Perovskite Microlasers, Nan Zhang, Yubin Fan, Kaiyang Wang, Zhiyuan Gu, Yuhan Wang, Li Ge, Shumin Xiao, Qinghai Song

Publications and Research

Lead halide perovskites based microlasers have recently shown their potential in nanophotonics. However, up to now, all of the perovskite microlasers are static and cannot be dynamically tuned in use. Herein, we demonstrate a robust mechanism to realize the alloptical control of perovskite microlasers. In lead halide perovskite microrods, deterministic mode switching takes place as the external excitation is increased: the onset of a new lasing mode switches off the initial one via a negative power slope, while the main laser characteristics are well kept. This mode switching is reversible with the excitation and has been explained via cross-gain saturation ...


Peptide Functionalized Surfactant Msns, Sonia Barrett 2019 Kansas State University Libraries

Peptide Functionalized Surfactant Msns, Sonia Barrett

Kansas State University Undergraduate Research Conference

Antibiotic resistance in bacteria has become a rising problem since the first antibiotic was created, further aggravated by the improper overuse to treat common infections, because of this pharmaceutical companies must keep making new and stronger antibiotics. Surfactants are plentiful and effective killers of many surface bacteria and are also varied in their structure, all have a hydrophilic head and long hydrophobic carbon chain. These long hydrophobic carbon chains can pierce through the lipid bilayers that make up bacteria cell membranes and cause cytoplasmic leakage and lysis of the cell wall, leading to cell death. One proposed surfactant is synthesized ...


Peptide Conjugation Of Branched Amphiphilic Peptide Capsules, Baltazar Claro-Martinez 2019 Kansas State University Libraries

Peptide Conjugation Of Branched Amphiphilic Peptide Capsules, Baltazar Claro-Martinez

Kansas State University Undergraduate Research Conference

In recent years, nanocarrier cellular therapy has been a rapidly growing area for research in the treatment of malignant and infectious diseases – most notably cancer. Conventional cancer treatment has consisted of highly toxic, highly insoluble, untargeted delivery of drugs that kill both cancerous and healthy cells. Research in the Tomich lab consists of the synthesis of Branched Amphiphilic Peptide Capsules (BAPCs), which are self-assembling peptide nanospheres composed of one or both of these branched peptide sequences: h5 and h9. These peptides possess similar molecular characteristics of phosphoglycerides but are synthesized chemically within the lab. Previous publications by the Tomich group ...


Therapeutic Peptide Sequences And Gatekeepers Loaded With Mesoporous Silica Nanoparticles, Dursitu Hassen 2019 Kansas State university

Therapeutic Peptide Sequences And Gatekeepers Loaded With Mesoporous Silica Nanoparticles, Dursitu Hassen

Kansas State University Undergraduate Research Conference

The research community is developing and looking into new ways of effectively delivering anti-cancer treatment. According to National Cancer Institute over 1.5 million new cases of cancer are predicted in the United States, just alone in 2018. The major hurdles that have been identified by scientists are finding mechanisms that assist in decreasing the side effects of cancer treatment and to increase the effectiveness of the drug. In our lab, a highly toxic peptide sequence, SA-K6L9-AS is encapsulated in MSNs (mesoporous silica nanoparticles) and capped with a gatekeeper. The function of a gatekeeper is preventing ...


Design Of Sensors For In-Vivo Detection Of Cancer Related Enzymes, laura soto 2019 Kansas State University Libraries

Design Of Sensors For In-Vivo Detection Of Cancer Related Enzymes, Laura Soto

Kansas State University Undergraduate Research Conference

Cancer continues to be among the leading causes of death worldwide. In 2018, there were approximately 9.6 million cancer deaths, just in the United States alone, there were 1.7 million new cancer cases and 600,000 deaths. That is why, there is an urgent need for better ways to battle cancer. Therefore, the goal of this project is to create a nanobiosensor which would have T1 and T2 based imaging capabilities to measure cancer enzymatic activity. The diagnostic tool would be useful to differentiate between benign and malignant tumors in-vivo and to quantify the effect of ...


Amphiphilic Polyanhydride-Based Recombinant Muc4Β-Nanovaccine Activates Dendritic Cells, Kasturi Banerjee, Shailendra K. Gautam, Prakash Kshirsagar, Kathleen A. Ross, Gaelle Spagnol, Paul Sorgen, Michael J. Wannemeuhler, Balaji Narasimhan, Joyce C. Solheim, Sushil Kumar, Surinder K. Batra, Maneesh Jain 2019 University of Nebraska Medical Center

Amphiphilic Polyanhydride-Based Recombinant Muc4Β-Nanovaccine Activates Dendritic Cells, Kasturi Banerjee, Shailendra K. Gautam, Prakash Kshirsagar, Kathleen A. Ross, Gaelle Spagnol, Paul Sorgen, Michael J. Wannemeuhler, Balaji Narasimhan, Joyce C. Solheim, Sushil Kumar, Surinder K. Batra, Maneesh Jain

Chemical and Biological Engineering Publications

Mucin 4 (MUC4) is a high molecular weight glycoprotein that is differentially overexpressed in pancreatic cancer (PC), functionally contributes to disease progression, and correlates with poor survival. Further, due to its aberrant glycosylation and extensive splicing, MUC4 is a potential target for cancer immunotherapy. Our previous studies have demonstrated the utility of amphiphilic polyanhydride nanoparticles as a useful platform for the development of protein-based prophylactic and therapeutic vaccines. In the present study, we encapsulated purified recombinant human MUC4-beta (MUC4β) protein in polyanhydride (20:80 CPTEG:CPH) nanoparticles (MUC4β-nanovaccine) and evaluated its ability to activate dendritic cells and induce adaptive immunity ...


Å-Indentation For Non-Destructive Elastic Moduli Measurements Of Supported Ultra-Hard Ultra-Thin Films And Nanostructures, Filippo Cellini, Yang Gao, Elisa Riedo 2019 New York University

Å-Indentation For Non-Destructive Elastic Moduli Measurements Of Supported Ultra-Hard Ultra-Thin Films And Nanostructures, Filippo Cellini, Yang Gao, Elisa Riedo

Publications and Research

During conventional nanoindentation measurements, the indentation depths are usually larger than 1–10 nm, which hinders the ability to study ultra-thin films (<10 >nm) and supported atomically thin two-dimensional (2D) materials. Here, we discuss the development of modulated Å-indentation to achieve sub-Å indentations depths during force-indentation measurements while also imaging materials with nanoscale resolution. Modulated nanoindentation (MoNI) was originally invented to measure the radial elasticity of multi-walled nanotubes. w, by using extremely small amplitude oscillations (<<1 Å) at high frequency, and stiff cantilevers, we show how modulated nano/Å-indentation (MoNI/ÅI) enables non-destructive measurements of the contact stiffness and indentation modulus of ultra-thin ultra-stiff films, including CVD diamond films (~1000 GPa stiffness), as well as the transverse modulus of 2D materials. Our analysis demonstrates that in presence of a standard laboratory noise floor, the signal to noise ratio of MoNI/ÅI implemented with a commercial atomic force microscope (AFM) is such that a dynamic range of 80 dB –– achievable with commercial Lock-in amplifiers –– is sufficient to observe superior indentation curves, having indentation depths as small as 0.3 Å, resolution in indentation <0.05 Å, and in normal load <0.5 nN. Being implemented on a standard AFM, this method has the potential for a broad applicability.


Pentablock Copolymer Micelle Nanoadjuvants Enhance Cytosolic Delivery Of Antigen And Improve Vaccine Efficacy While Inducing Low Inflammation, Sujata Senapati, Ross J. Darling, Darren Loh, Ian C. Schneider, Michael J. Wannemeuhler, Balaji Narasimhan, Surya K. Mallapragada 2019 Iowa State University

Pentablock Copolymer Micelle Nanoadjuvants Enhance Cytosolic Delivery Of Antigen And Improve Vaccine Efficacy While Inducing Low Inflammation, Sujata Senapati, Ross J. Darling, Darren Loh, Ian C. Schneider, Michael J. Wannemeuhler, Balaji Narasimhan, Surya K. Mallapragada

Chemistry Publications

As the focus has shifted from traditional killed or live, attenuated vaccines towards subunit vaccines, improvements in vaccine safety have been confronted with low immunogenicity of protein antigens. This issue has been addressed by synthesizing and designing a wide variety of antigen carriers and adjuvants, such as Toll-like receptor agonists (e.g., MPLA, CpG). Studies have focused on optimizing adjuvants for improved cellular trafficking, cytosolic availability, and improved antigen presentation. In this work, we describe the design of novel amphiphilic pentablock copolymer (PBC) adjuvants that exhibit high biocompatibility and reversible pH- and temperature-sensitive micelle formation. We demonstrate improved humoral immunity ...


Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills 2019 The University of Akron

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the ...


Nanoscale Stiffness Cues Influence Valvular Interstitial Cell Activation To Myofibroblasts, Michaela Wenning 2019 University of Colorado, Boulder

Nanoscale Stiffness Cues Influence Valvular Interstitial Cell Activation To Myofibroblasts, Michaela Wenning

Undergraduate Honors Theses

Surgery is currently the primary treatment option for aortic valve stenosis (AVS) patients, many of whom are ineligible for surgery and are left untreated. AVS is progression is known to differ between males and females, and an understanding of sex-specific mechanisms of disease progression is imperative in developing accurate treatment options for men and women. The development of a nonsurgical therapy for AVS patients requires a deeper understanding of the molecular and cellular mechanisms of AVS progression. Currently, the role of calcium phosphate nanoparticles detected in the aortic valve during early stages of AVS in influencing disease progression and valvular ...


In The Search For Novel Solutions To Antibiotic Resistance, Are Nanoparticles The Next Big Thing?, Christopher Culek 2019 Iowa State University

In The Search For Novel Solutions To Antibiotic Resistance, Are Nanoparticles The Next Big Thing?, Christopher Culek

Creative Components

Multi-drug resistant and more virulent strains of bacteria are a serious concern for microbiologists and medical practitioners. Many common disease causing organisms are becoming resistant to multiple classes of antibiotics. Recent research has given us a greater understanding of the issues with bacterial adaptations to drugs, multi-drug resistance, biofilms, and infection site microenvironments. The new understanding of bacterial resistance has led to experimentation for new and potentially more efficacious drug delivery systems. One such delivery system is nanoparticles. Nanoparticles offer a way to target antibiotic treatment to the site of infection. This feature provides treatment with two major benefits: increased ...


Therapeutic Delivery Technology And Its Economic Impact, Paul E. Savas Jr. 2019 Liberty University

Therapeutic Delivery Technology And Its Economic Impact, Paul E. Savas Jr.

Senior Honors Theses

Therapeutic delivery technology is a current area of high interest in both university and industrial settings. These technologies are being developed in order to deliver therapeutic agents, such as genes, proteins, and drugs, to patients more efficiently. Nanoscale delivery vehicles have proven to be useful for these applications; these vehicles may either be naturally produced or chemically synthesized. The physical properties of these nanomaterials must be characterized correctly using instrumentation that evaluates their size, morphology, and potential for agglomeration. These technologies represent a high-growth economic area that fosters entrepreneurship and innovation. Because of this innovative spirit, research and economic interest ...


Graphene Nanoflake Uptake Mediated By Scavenger Receptors, Fatima Alnasser, Valentina Castagnola, Luca Boselli, Margarita Esquivel-Gaon, Esen Efeoglu, Jennifer McIntyre, Hugh J. Byrne, Kenneth A. Dawson 2019 University College Dublin

Graphene Nanoflake Uptake Mediated By Scavenger Receptors, Fatima Alnasser, Valentina Castagnola, Luca Boselli, Margarita Esquivel-Gaon, Esen Efeoglu, Jennifer Mcintyre, Hugh J. Byrne, Kenneth A. Dawson

Articles

The biological interactions of graphene have been extensively investigated over the last 10 years. However, very little is known about graphene interactions with the cell surface and how the graphene internalization process is driven and mediated by specific recognition sites at the interface with the cell. In this work, we propose a methodology to investigate direct molecular correlations between the biomolecular corona of graphene and specific cell receptors, showing that key protein recognition motifs, presented on the nanomaterial surface, can engage selectively with specific cell receptors. We consider the case of apolipoprotein A-I, found to be very abundant in the ...


Digital Commons powered by bepress