Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

3,596 Full-Text Articles 8,277 Authors 443,989 Downloads 170 Institutions

All Articles in Cell Biology

Faceted Search

3,596 full-text articles. Page 1 of 135.

Sperm Motility In Groups, Julie Simons 2019 California State University Maritime Academy

Sperm Motility In Groups, Julie Simons

Annual Symposium on Biomathematics and Ecology: Education and Research

No abstract provided.


Anti-Cancer Effects Of Oleocanthal And Extra Virgin Olive Oil, Limor Goren 2019 The Graduate Center, City University of New York

Anti-Cancer Effects Of Oleocanthal And Extra Virgin Olive Oil, Limor Goren

All Dissertations, Theses, and Capstone Projects

Oleocanthal is a phenolic compound found in varying concentrations in extra virgin olive oil. Oleocanthal has been shown to be active physiologically, benefiting several diseased states by conferring anti-inflammatory and neuroprotective benefits. Recently, we and other groups have demonstrated its specific and selective toxicity toward cancer cells; however, the mechanism leading to cancer cell death is still disputed. The current study demonstrates that oleocanthal induced damage to cancer cells’ lysosomes leading to cellular toxicity in vitro. Non-cancer cells were significantly less affected. Lysosomal membrane permeabilization following oleocanthal treatment in various cell lines was assayed via three complementary methods. Additionally, we ...


Hyaluronan At The Brain-Environment Interface, Donald M. Thevalingam 2019 The Graduate Center, City University of New York

Hyaluronan At The Brain-Environment Interface, Donald M. Thevalingam

All Dissertations, Theses, and Capstone Projects

Hyaluronan (HA; Hyaluronic Acid), a primary scaffolding component of the brain extracellular matrix, serves as an integral structural component to the brain extracellular space (ECS). The fossorial African naked mole-rat (Heterocephalus glaber; NM-R), a mammal which lives in a low-oxygen environment and is capable of tolerating hypoxia and hypercapnia, has been shown to synthesize and sustain a unique high-molecular-mass variant of hyaluronan macromolecule (HMM-HA). This body of work highlights HA’s role in mediating the interplay between brain ECM composition, ECS structure, and cell viability.

Here we employ the NM-R as a unique animal model to observe the role of ...


Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts 2019 University of Arkansas, Fayetteville

Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts

Theses and Dissertations

Volumetric muscle loss overwhelms skeletal muscle’s ordinarily capable regenerative machinery, resulting in fibrosis and severe functional deficits which have defied clinical repair strategies. My work spans the design and preclinical evaluation of implants intended to drive the cell community of injured muscle toward a regenerative state, as well as the development of an understanding of the molecular responses of this cell community to biomaterial interventions. I demonstrate a new class of biomaterial by leveraging the productive capacity of sacrificial hollow fiber membrane cell culture; I show specifically that unique threads of whole extracellular matrix can be isolated by solvent ...


Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali 2019 The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences

Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali

UT GSBS Dissertations and Theses (Open Access)

Recently, a novel class of muscular dystrophy has been discovered in a family due to autosomal recessive missense mutation in POGLUT1. Mutation of this enzyme leads to decreased O-glucosyltransferase activity and impaired Notch signaling, the pathways important for skeletal muscle stem cell (satellite cells) quiescence and activation. We hypothesize that reduced POGLUT1 activity and impaired Notch signaling is causative of this limb girdle muscular dystrophy through dysfunction of muscle stem cells and myogenic progenitors.

To test this, we have used iPSCs for disease modeling and rescue experiments. Using a CRISPR based gene targeting method, we aimed to correct the point ...


The ‘Law Of Environmental Dependence’ - Biology And Ethics In The Work Of Ernest Everett Just: + Found – Some 251 Mostly Typed Pages, Theodore Walker 2019 Southern Methodist University

The ‘Law Of Environmental Dependence’ - Biology And Ethics In The Work Of Ernest Everett Just: + Found – Some 251 Mostly Typed Pages, Theodore Walker

Perkins Faculty Research and Special Events

Abstract-

“The Origin of Man’s Ethical Behavior” (circa October 1941) by Ernest Everett Just and Hedwig A. Schnetzler Just - is an unpublished book manuscript about the biological origins and evolution of ethical behavior, and about “the law of environmental dependence.” Missing since Just’s death in October 1941, it was found and identified in May 2018 among the collected papers of Ernest Everett Just preserved at the Howard University Moorland-Spingarn Research Center in Washington, DC. In addition to the 1996 US postage with the caption “Ernest E. Just, Biologist,” we now have reason to add two new postage stamps ...


Calcineurin Broadly Regulates The Initiation Of Skeletal Muscle-Specific Gene Expression By Binding Target Promoters And Facilitating The Interaction Of The Swi/Snf Chromatin Remodeling Enzyme, Hanna Witwicka, Jumpei Nogami, Sabriya A. Syed, Kazumitsu Maehara, Teresita Padilla-Benavides, Yasuyuki Ohkawa, Anthony N. Imbalzano 2019 University of Massachusetts Medical School

Calcineurin Broadly Regulates The Initiation Of Skeletal Muscle-Specific Gene Expression By Binding Target Promoters And Facilitating The Interaction Of The Swi/Snf Chromatin Remodeling Enzyme, Hanna Witwicka, Jumpei Nogami, Sabriya A. Syed, Kazumitsu Maehara, Teresita Padilla-Benavides, Yasuyuki Ohkawa, Anthony N. Imbalzano

Open Access Articles

Calcineurin (Cn) is a calcium-activated serine/threonine protein phosphatase that is broadly implicated in diverse cellular processes, including the regulation of gene expression. During skeletal muscle differentiation, Cn activates the NFAT transcription factor but also promotes differentiation by counteracting the negative influences of protein kinase C beta (PKCbeta) via dephosphorylation and activation of BRG1, an enzymatic subunit of the mammalian SWI/SNF ATP-dependent chromatin remodeling enzyme. Here we identified four major temporal patterns of Cn-dependent gene expression in differentiating myoblasts and determined that Cn is broadly required for the activation of the myogenic gene expression program. Mechanistically, Cn promotes gene ...


F-Box Protein Fbxo16 Functions As A Tumor Suppressor By Attenuating Nuclear Beta-Catenin Function, Debasish Paul, Sehbanul Islam, Rajesh Kumar. Manne, U. S. Dinesh, Sunil K. Malonia, Biswanath Maity, Ramanamurthy Boppana, Srikanth Rapole, Praveen Kumar Shetty, Manas Kumar Santra 2019 Savitribai Phule Pune University

F-Box Protein Fbxo16 Functions As A Tumor Suppressor By Attenuating Nuclear Beta-Catenin Function, Debasish Paul, Sehbanul Islam, Rajesh Kumar. Manne, U. S. Dinesh, Sunil K. Malonia, Biswanath Maity, Ramanamurthy Boppana, Srikanth Rapole, Praveen Kumar Shetty, Manas Kumar Santra

Open Access Articles

Aberrant activation of beta-catenin has been implicated in a variety of human diseases, including cancer. In spite of significant progress, the regulation of active Wnt/beta-catenin-signaling pathways is still poorly understood. In this study, we show that F-box protein 16 (FBXO16) is a putative tumor suppressor. It is a component of the SCF (SKP1-Cullin1-F-box protein) complex, which targets the nuclear beta-catenin protein to facilitate proteasomal degradation through the 26S proteasome. FBXO16 interacts physically with the C-terminal domain of beta-catenin and promotes its lysine 48-linked polyubiquitination. In addition, it inhibits epithelial-to-mesenchymal transition (EMT) by attenuating the level of beta-catenin. Therefore, depletion ...


The Expression Of Connexin-43 By Cd11c+ Dendritic Cells Is Required To Maintain Cd4+ Foxp3+ Regulatory T Cell Population In Peripheral Lymphoid Organs, Caroline Titus Miller 2019 Old Dominion University

The Expression Of Connexin-43 By Cd11c+ Dendritic Cells Is Required To Maintain Cd4+ Foxp3+ Regulatory T Cell Population In Peripheral Lymphoid Organs, Caroline Titus Miller

Biological Sciences Theses & Dissertations

Foxp3+ regulatory T cells (TR) are an immunosuppressive subset of CD4+ T cells that maintain homeostasis of the immune system. They are sustained by the interaction between the Major Histocompatibility Complex (MHC) molecules present on antigen presenting dendritic cells and the T Cell Receptor (TCR) expressed on TR cells that is specific for the MHC loaded with an antigenic peptide. Here, we show that in addition to MHC/TCR interaction, Connexin-43 (Cx43) expression by dendritic cells is required to maintain the TR cell population. CD11c+ dendritic cells represent a major subset of antigen presenting cells. Using flow cytometry ...


Endogenous Force Transmission Between Epithelial Cells And A Role For Α-Catenin, Sandeep Dumbali 2019 Old Dominion University

Endogenous Force Transmission Between Epithelial Cells And A Role For Α-Catenin, Sandeep Dumbali

Mechanical & Aerospace Engineering Theses & Dissertations

In epithelial tissues, epithelial cells adhere to each other as well as to the underlying extra-cellular matrix (ECM). E-cadherin-based intercellular junctions play an important role in tissue integrity. These junctions experience cell-generated mechanical forces via apparent adaptor proteins such as beta (β) catenin, alpha (α) catenin and vinculin. Abnormalities in these junctions may result in skin related diseases and cancers. Here, I devised methods to determine the endogenous intercellular force within cell pairs as well as in large epithelial islands. I further ascertained the factors that affect the level of inter-cellular tension.

Experiments with pairs of epithelial cells exogenously expressing ...


Regulation Of Endoplasmic Reticulum Stress Sensitivity By Torc1 Signalling In Yeast, Khadija Ahmed, Patrick Lajoie 2019 Western University

Regulation Of Endoplasmic Reticulum Stress Sensitivity By Torc1 Signalling In Yeast, Khadija Ahmed, Patrick Lajoie

Western Research Forum

Incorrect folding of secretory proteins in the endoplasmic reticulum (ER) results in an aberrant accumulation of misfolded proteins (ER stress) and activates a coping mechanism known as the unfolded protein response (UPR). While the mechanisms of UPR activation have been well established, how it integrates with other stress responses remains unclear.

Given that TORC1 is an important regulator of cell growth during protein misfolding stress, we sought to investigate how TORC1 signalling acts in parallel with the UPR to regulate ER stress sensitivity. Our studies employ the budding yeast, Saccharomyces cerevisiae, a biochemically traceable model organism that allows for extensive ...


Uncovering The Role Of Ovol1 In Placental Stem Cell Differentiation Using Saccharomyces Cerevisiae, Maram Albakri, Patrick Lajoie, Stephen Renaud, Gargi Jaju, Hazel Dhaliwal 2019 Western University

Uncovering The Role Of Ovol1 In Placental Stem Cell Differentiation Using Saccharomyces Cerevisiae, Maram Albakri, Patrick Lajoie, Stephen Renaud, Gargi Jaju, Hazel Dhaliwal

Western Research Forum

OVOL1 is a conserved transcription factor involved in regulating cytrophoblast differentiation in the placenta. Our objective for this study is to use Saccharomyces cerevisiae to uncover the role of OVOL1 in placental stem cell differentiation and proliferation. Previous research suggests that OVOL1 regulates cytotrophoblast progenitor state by regulating genome acetylation. Therefore, our study aims to determine how OVOL1 effect yeast growth and the yeast acetylome, and to use the yeast model to determine downstream targets of OVOL1. In order to understand the role of OVOL1, we will develop a yeast model and employ growth assays to assess growth defects and ...


Knocking Out A Negative Regulator Of Hedgehog Signaling Blocks Differentiation Of Cells Into Neurons, Danielle Margaret Spice, Gregory M. Kelly Ph.D. 2019 Western University

Knocking Out A Negative Regulator Of Hedgehog Signaling Blocks Differentiation Of Cells Into Neurons, Danielle Margaret Spice, Gregory M. Kelly Ph.D.

Western Research Forum

Hedgehog (Hh) signaling, one of many different protein signaling pathways found in mammals, is vital in many stage of neural development. A major negative regulator of Hh signaling is a protein known as Suppressor of Fused (SUFU), which acts to sequester the full length Gli transcription factors, proteins that can turn genes on and off, in the cytoplasm or facilitates its conversion to a repressive form. The P19 embryonal carcinoma cell line is a model of hind-brain neuronal differentiation and the involvement of Hh signaling, in particular the role of SUFU in this process has yet to be explored. We ...


Tethering Of Vesicles To The Golgi By Gmap210 Controls Lat Delivery To The Immune Synapse, Andres Ernesto Zucchetti, Laurence Bataille, Jean-Marie Carpier, Stephanie Dogniaux, Mabel San Roman-Jouve, Mathieu Maurin, Michael W. Stuck, Rosa M. Rios, Cosima T. Baldari, Gregory J. Pazour, Claire Hivroz 2019 PSL Research University

Tethering Of Vesicles To The Golgi By Gmap210 Controls Lat Delivery To The Immune Synapse, Andres Ernesto Zucchetti, Laurence Bataille, Jean-Marie Carpier, Stephanie Dogniaux, Mabel San Roman-Jouve, Mathieu Maurin, Michael W. Stuck, Rosa M. Rios, Cosima T. Baldari, Gregory J. Pazour, Claire Hivroz

Open Access Articles

The T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse. Regulating LAT recruitment and LAT-dependent signaling, GMAP210 controls T cell activation. Using a rerouting and capture assay, we show that GMAP210 captures VAMP7-decorated vesicles. Overexpressing different domains of GMAP210, we also show that GMAP210 allows their specific delivery to the immune ...


Somatic Molecular Analysis Augments Cytologic Evaluation Of Pancreatic Cyst Fluids As A Diagnostic Tool, Ali Sakhdari, Parnian Ahmadi Moghaddam, Chi Young Ok, Otto Walter, Keith Tomaszewicz, Mandi-Lee Caporelli, Xiuling Meng, Jennifer LaFemina, Giles F. Whalen, Edward Belkin, Jaroslav Zivny, Wahid Y. Wassef, Bruce A. Woda, Lloyd Hutchinson, Ediz F. Cosar 2019 University of Massachusetts Medical School

Somatic Molecular Analysis Augments Cytologic Evaluation Of Pancreatic Cyst Fluids As A Diagnostic Tool, Ali Sakhdari, Parnian Ahmadi Moghaddam, Chi Young Ok, Otto Walter, Keith Tomaszewicz, Mandi-Lee Caporelli, Xiuling Meng, Jennifer Lafemina, Giles F. Whalen, Edward Belkin, Jaroslav Zivny, Wahid Y. Wassef, Bruce A. Woda, Lloyd Hutchinson, Ediz F. Cosar

Open Access Articles

Objective: Better tools are needed for early diagnosis and classification of pancreatic cystic lesions (PCL) to trigger intervention before neoplastic precursor lesions progress to adenocarcinoma. We evaluated the capacity of molecular analysis to improve the accuracy of cytologic diagnosis for PCL with an emphasis on non-diagnostic/negative specimens.

Design: In a span of 7 years, at a tertiary care hospital, 318 PCL endoscopic ultrasound-guided fine needle aspirations (EUS-FNA) were evaluated by cytologic examination and molecular analysis. Mucinous PCL were identified based on a clinical algorithm and 46 surgical resections were used to verify this approach. The mutation allele frequency (MAF ...


Ste5 Membrane Localization Allows Mapk Pathway Signaling In Trans Between Kinases On Separate Scaffold Molecules, Rachel E. Lamson, Matthew J. Winters, Peter M. Pryciak 2019 University of Massachusetts Medical School

Ste5 Membrane Localization Allows Mapk Pathway Signaling In Trans Between Kinases On Separate Scaffold Molecules, Rachel E. Lamson, Matthew J. Winters, Peter M. Pryciak

University of Massachusetts Medical School Faculty Publications

The MAP kinase cascade is a ubiquitous eukaryotic signaling module that can be controlled by a diverse group of scaffold proteins. In budding yeast, activation of the mating MAP kinase cascade involves regulated membrane recruitment of the archetypal scaffold protein Ste5. This event promotes activation of the first kinase, but it also enhances subsequent signal propagation through the remainder of the cascade. By studying this latter effect, we find that membrane recruitment promotes signaling in trans between kinases on separate Ste5 molecules. First, trans signaling requires all Ste5 domains that mediate membrane recruitment, including both protein-binding and membrane-binding domains. Second ...


Mtf1, A Classic Metal Sensing Transcription Factor, Promotes Myogenesis In Response To Copper, Cristina Tavera-Montañez, Sarah J. Hainer, Daniella Cangussu, Shellaina J. V. Gordon, Yao Xiao, Pablo Reyes-Gutierrez, Anthony N. Imbalzano, Juan G. Navea, Thomas G. Fazzio, Teresita Padilla-Benavides 2019 University of Massachusetts Medical School

Mtf1, A Classic Metal Sensing Transcription Factor, Promotes Myogenesis In Response To Copper, Cristina Tavera-Montañez, Sarah J. Hainer, Daniella Cangussu, Shellaina J. V. Gordon, Yao Xiao, Pablo Reyes-Gutierrez, Anthony N. Imbalzano, Juan G. Navea, Thomas G. Fazzio, Teresita Padilla-Benavides

University of Massachusetts Medical School Faculty Publications

MTF1 is a conserved metal-binding transcription factor in eukaryotes that binds to conserved DNA sequence motifs, termed metal response elements (MREs). MTF1 responds to metal excess and deprivation, protects cells from oxidative and hypoxic stresses, and is required for embryonic development in vertebrates. We used multiple strategies to identify an unappreciated role for MTF1 and copper (Cu) in cell differentiation. Upon initiation of myogenesis from primary myoblasts, MTF1 expression increased, as did nuclear localization. Mtf1 knockdown impaired differentiation, while addition of non-toxic concentrations of Cu+ enhanced MTF1 expression and promoted myogenesis. Cu+ bound stoichiometrically to a C-terminus tetra-cysteine of MTF1 ...


Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition In Cancer, Monserrat Olea-Flores, Miriam Daniela Zuniga-Eulogio, Miguel Angel Mendoza-Catalan, Hugo Alberto Rodriguez-Ruiz, Eduardo Castaneda-Saucedo, Carlos Ortuno-Pineda, Teresita Padilla-Benavides, Napoleon Navarro-Tito 2019 Autonomous University of Guerrero

Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition In Cancer, Monserrat Olea-Flores, Miriam Daniela Zuniga-Eulogio, Miguel Angel Mendoza-Catalan, Hugo Alberto Rodriguez-Ruiz, Eduardo Castaneda-Saucedo, Carlos Ortuno-Pineda, Teresita Padilla-Benavides, Napoleon Navarro-Tito

Open Access Articles

Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4 ...


Insulin Signal Transduction Mediates Ethanol-Induced Feeding Dysfunction In A Fly Model Of Fetal Alcohol Spectrum Disorder, Manae Matsubara 2019 San Jose State University

Insulin Signal Transduction Mediates Ethanol-Induced Feeding Dysfunction In A Fly Model Of Fetal Alcohol Spectrum Disorder, Manae Matsubara

McNair Research Journal SJSU

Fetal alcohol spectrum disorder (FASD) is the leading cause of congenital intellectual disabilities in the Western World, with a worldwide prevalence of 2-11% of all births. FASD is preventable but recent epidemiological studies suggest that public awareness campaigns have reached the limits of their effectiveness. Therefore, research is shifting from prevention to treatment and mitigation of symptoms. No biological treatments for FASD exist, due in part to the fact the cellular mechanisms of alcohol toxicity are not well-understood. Developmental alcohol exposure (DAE) causes a variety of deleterious effects in both vertebrates and invertebrates, including increased mortality, slow growth, learning and ...


Smooth Muscle Cell-Specific Tmem16a Deletion Does Not Alter Ca2+ Signaling, Uterine Contraction, Gestation Length Or Litter Size In Micedagger, Mingzi Qu, Ping Lu, Karl D. Bellve, Kevin E. Fogarty, Lawrence M. Lifshitz, Fangxiong Shi, Ronghua ZhuGe 2019 University of Massachusetts Medical School

Smooth Muscle Cell-Specific Tmem16a Deletion Does Not Alter Ca2+ Signaling, Uterine Contraction, Gestation Length Or Litter Size In Micedagger, Mingzi Qu, Ping Lu, Karl D. Bellve, Kevin E. Fogarty, Lawrence M. Lifshitz, Fangxiong Shi, Ronghua Zhuge

Program in Molecular Medicine Publications and Presentations

Ion channels in myometrial cells play critical roles in spontaneous and agonist-induced uterine contraction during the menstrual cycle, pregnancy maintenance and parturition; thus identifying the genes of ion channels in these cells and determining their roles are essential to understanding the biology of reproduction. Previous studies with in vitro functional and pharmacological approaches have produced controversial results regarding the presence and role of TMEM16A Ca2+-activated Cl- channels in myometrial cells. To unambiguously determine the function of this channel in these cells, we employed a genetic approach by using smooth muscle cell-specific TMEM16A deletion (i.e. TMEM16ASMKO) mice. We found ...


Digital Commons powered by bepress