Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

12,655 Full-Text Articles 26,590 Authors 1,658,542 Downloads 250 Institutions

All Articles in Biochemistry, Biophysics, and Structural Biology

Faceted Search

12,655 full-text articles. Page 7 of 436.

Examining Lateral Line Development Through Cxcl14 Modulation Of Cxcl12-Cxcr4 Mediated Gene Expression In Danio Rerio, Ariana Calderon-Zavala 2019 Lawrence University

Examining Lateral Line Development Through Cxcl14 Modulation Of Cxcl12-Cxcr4 Mediated Gene Expression In Danio Rerio, Ariana Calderon-Zavala

Lawrence University Honors Projects

The lateral line is a mechanosensory system used by fish to sense the movement of water. It is evolutionarily related to the inner-ear in humans. For both organisms, the binding of the CXCL12 (SDF-1 ligand) to the CXCR4 receptor induces conformational changes needed to activate signal transduction. This signaling results in numerous cellular responses such as cell fate, chemotaxis, and gene transcription. Interestingly, researchers have found that another signaling molecule, CXCL14, can also bind to the CXCR4 receptor with high affinity (Tanegashima et al., 2013). As a result, we hypothesize that CXCL14 modulates CXCL12-mediated chemotaxis, presumably acting as an allosteric ...


Nf-Κb In Biomphalaria Glabrata: A Genetic Fluke?, Paige Stocker 2019 Lawrence University

Nf-Κb In Biomphalaria Glabrata: A Genetic Fluke?, Paige Stocker

Lawrence University Honors Projects

Biomphalaria glabrata is the intermediate host to the disease causing parasitic worm, Schistosoma mansoni. Previous work has identified homologs of NF-κB, a known immune related transcription factor, in B. glabrata and work has also been done to establish putative κB sites. It has also been observed that the p65 homologous subunit has an extended N-terminal region not present in other homologs. The goal of the present study is twofold: investigate DNA binding affinity of two NF-κB subunits, Bg-p65 and Bg-p50, and characterize the nature of the N-terminal extension of Bg-p65. In the current work, it is shown through the use ...


Acid Sphingomyelinase Regulates The Localization And Trafficking Of Palmitoylated Proteins, Xiahui Xiong, Chia-Fang Lee, Wenjing Li, Jiekai Yu, Linyu Zhu, Yongsoon Kim, Hul Zhang, Hong Sun 2019 University of Nevada, Las Vegas

Acid Sphingomyelinase Regulates The Localization And Trafficking Of Palmitoylated Proteins, Xiahui Xiong, Chia-Fang Lee, Wenjing Li, Jiekai Yu, Linyu Zhu, Yongsoon Kim, Hul Zhang, Hong Sun

Chemistry and Biochemistry Faculty Publications

In human, loss of Acid Sphingomeylinase (ASM/SMPD1) causes Niemann-Pick Disease, type A. ASM hydrolyzes sphingomyelins to produce ceramides but protein targets of ASM remain largely unclear. ... See full text for complete abstract.


Adipocyte Acly Facilitates Dietary Carbohydrate Handling To Maintain Metabolic Homeostasis In Females, Sully Fernandez, John M. Viola, AnnMarie Torres, Martina Wallace, Sophie Trefely, Steven Zhao, Hayley C. Affronti, Jivani M. Gengatharan, David A. Guertin, Nathaniel W. Snyder, Christian M. Metallo, Kathryn E. Wellen 2019 University of Pennsylvania

Adipocyte Acly Facilitates Dietary Carbohydrate Handling To Maintain Metabolic Homeostasis In Females, Sully Fernandez, John M. Viola, Annmarie Torres, Martina Wallace, Sophie Trefely, Steven Zhao, Hayley C. Affronti, Jivani M. Gengatharan, David A. Guertin, Nathaniel W. Snyder, Christian M. Metallo, Kathryn E. Wellen

Open Access Articles

Sugars and refined carbohydrates are major components of the modern diet. ATP-citrate lyase (ACLY) is upregulated in adipocytes in response to carbohydrate consumption and generates acetyl-coenzyme A (CoA) for both lipid synthesis and acetylation reactions. Here, we investigate the role of ACLY in the metabolic and transcriptional responses to carbohydrates in adipocytes and unexpectedly uncover a sexually dimorphic function in maintaining systemic metabolic homeostasis. When fed a high-sucrose diet, Acly(FAT-/-) females exhibit a lipodystrophy-like phenotype, with minimal fat accumulation, insulin resistance, and hepatic lipid accumulation, whereas Acly(FAT-/-) males have only mild metabolic phenotypes. We find that ACLY is ...


An Order-To-Disorder Structural Switch Activates The Foxm1 Transcription Factor, Aimee H. Marceau, Caileen M. Brison, Santrupti Nerli, Heather E. Arsenault, Andrew C. McShan, Eefei Chen, Hsiau-Wei Lee, Jennifer A. Benanti, Nikolaos G. Sgourakis, Seth M. Rubin 2019 University of California, Santa Cruz

An Order-To-Disorder Structural Switch Activates The Foxm1 Transcription Factor, Aimee H. Marceau, Caileen M. Brison, Santrupti Nerli, Heather E. Arsenault, Andrew C. Mcshan, Eefei Chen, Hsiau-Wei Lee, Jennifer A. Benanti, Nikolaos G. Sgourakis, Seth M. Rubin

Open Access Articles

Intrinsically disordered transcription factor transactivation domains (TADs) function through structural plasticity, adopting ordered conformations when bound to transcriptional co-regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically disordered domains, they associate and adopt a structured conformation. We identify how Plk1 and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered conformation that ...


Serum Deprivation Of Mesenchymal Stem Cells Improves Exosome Activity And Alters Lipid And Protein Composition, Reka A. Haraszti, Rachael Miller, Michelle L. Dubuke, Andrew H. Coles, Marie C. Didiot, Dimas Echeverria, Matteo Stoppato, Yves Y. Sere, John D. Leszyk, Julia F. Alterman, Bruno M. D. C. Godinho, Matthew R. Hassler, Rachel Wollacott, Yan Wang, Scott A. Shaffer, Neil Aronin, Anastasia Khvorova 2019 University of Massachusetts Medical School

Serum Deprivation Of Mesenchymal Stem Cells Improves Exosome Activity And Alters Lipid And Protein Composition, Reka A. Haraszti, Rachael Miller, Michelle L. Dubuke, Andrew H. Coles, Marie C. Didiot, Dimas Echeverria, Matteo Stoppato, Yves Y. Sere, John D. Leszyk, Julia F. Alterman, Bruno M. D. C. Godinho, Matthew R. Hassler, Rachel Wollacott, Yan Wang, Scott A. Shaffer, Neil Aronin, Anastasia Khvorova

Open Access Articles

Exosomes can serve as delivery vehicles for advanced therapeutics. The components necessary and sufficient to support exosomal delivery have not been established. Here we connect biochemical composition and activity of exosomes to optimize exosome-mediated delivery of small interfering RNAs (siRNAs). This information is used to create effective artificial exosomes. We show that serum-deprived mesenchymal stem cells produce exosomes up to 22-fold more effective at delivering siRNAs to neurons than exosomes derived from control cells. Proteinase treatment of exosomes stops siRNA transfer, indicating that surface proteins on exosomes are involved in trafficking. Proteomic and lipidomic analyses show that exosomes derived in ...


Novel Amphiphilic Cyclobutene And Cyclobutane Cis-C18 Fatty Acid Derivatives Inhibit Mycobacterium Avium Subsp. Paratuberculosis Growth, Denise K. Zinniel, Wantanee Sittiwong, Darrell D. Marshall, Govardhan Rathnaiah, Isin Sakallioglu, Robert Powers, Patrick H. Dussault, Raul G. Barletta 2019 University of Nebraska - Lincoln

Novel Amphiphilic Cyclobutene And Cyclobutane Cis-C18 Fatty Acid Derivatives Inhibit Mycobacterium Avium Subsp. Paratuberculosis Growth, Denise K. Zinniel, Wantanee Sittiwong, Darrell D. Marshall, Govardhan Rathnaiah, Isin Sakallioglu, Robert Powers, Patrick H. Dussault, Raul G. Barletta

Papers in Veterinary and Biomedical Science

Mycobacterium avium subspecies paratuberculosis (Map) is the etiologic agent of Johne’s disease in ruminants and has been associated with Crohn’s disease in humans. An ective control of Map by either vaccines or chemoprophylaxis is a paramount need for veterinary and possibly human medicine. Given the importance of fatty acids in the biosynthesis of mycolic acids and the mycobacterial cell wall, we tested novel amphiphilic C10 and C18 cyclobutene and cyclobutane fatty acid derivatives for Map inhibition. Microdilution minimal inhibitory concentrations (MIC) with 5 or 7 week endpoints were measured in Middlebrook 7H9 base broth media. We compared the ...


Induction Of Ethylene Inhibits Development Of Soybean Sudden Death Syndrome By Inducing Defense-Related Genes And Reducing Fusarium Virguliforme Growth, Noor A. Abdelsamad, Gustavo C. Macintosh, Leonor F.S. Leandro 2019 U.S. Department of Agriculture

Induction Of Ethylene Inhibits Development Of Soybean Sudden Death Syndrome By Inducing Defense-Related Genes And Reducing Fusarium Virguliforme Growth, Noor A. Abdelsamad, Gustavo C. Macintosh, Leonor F.S. Leandro

Biochemistry, Biophysics and Molecular Biology Publications

Ethylene is a gaseous hormone that regulates plant responses to biotic and abiotic stresses. To investigate the importance of ethylene in soybean resistance to Fusarium virguliforme (Fv), the causal agent of sudden death syndrome (SDS), soybean cultivars Williams 82 (SDS-susceptible) and MN1606 (SDS-resistant) were treated 24 h before and 24h after Fv inoculation with either ethephon (ethylene inducer), cobalt chloride (ethylene biosynthesis inhibitor), or 1-MCP (ethylene perception inhibitor). Inoculated plants were grown for 21 days at 24°C in the greenhouse and then evaluated for SDS severity and expression of soybean defense genes. In both cultivars, plants treated with ethephon ...


Dft Study On The Binding Of Selected Metal Ions With Phenylalanine Dipeptide, Ebtehal Alghamdi 2019 Atlanta University Center

Dft Study On The Binding Of Selected Metal Ions With Phenylalanine Dipeptide, Ebtehal Alghamdi

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

In this study, M06-2X/6-311+G(2d,2p) level calculations were performed to examine the binding energies and vibrational frequencies of different conformers of phenylalanine dipeptide interacting with metal ions (Na+, K+, Mg2+ and Ca2+). Four conformers were selected from the list of 20 most stable structures. The main goal was to understand the influence of conformers on the binding affinity of metal ions with different conformers of phenylalanine dipeptide. In agreement with experimental results, interactions of metal ions with two aromatic rings along with lone pair electrons of oxygen produced high stability. Binding energy was lowest for ...


Extraction, Purification And Evaluation Of Prmt5-Inhibitory Phytochemical Compounds For The Treatment Of Prostate Adenocarcinoma, Oliver H. Richmond III 2019 Clark Atlanta University

Extraction, Purification And Evaluation Of Prmt5-Inhibitory Phytochemical Compounds For The Treatment Of Prostate Adenocarcinoma, Oliver H. Richmond Iii

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

The development and advancement of prostate cancer is supported by a plethora of genetic and proteomic abnormalities, including events of post-translational modifications. The protein arginine methyltransferase 5 (PRMT5) enzyme regulates epigenetic events of histone modifications and protein post-translational modifications within protein signaling pathways. PRMT5 functions by catalyzing the symmetric dimethylation of terminal arginine residues on target protein substrates. Under abnormal conditions of overexpression and upregulation, PRMT5 methyltransferase activity constitutively drives the growth and proliferation of dysregulated cells. Overexpression or upregulation of PRMT5 correlates with disease progression as observed among numerous cancer types, including breast, colorectal, leukemia, lung, melanoma and prostate ...


Applications Of Sirna For Cancer Gene Therapy, Christopher Nicholas Cultrara 2019 Seton Hall University

Applications Of Sirna For Cancer Gene Therapy, Christopher Nicholas Cultrara

Seton Hall University Dissertations and Theses (ETDs)

Gene therapy is a potent and versatile nano-medicine strategy in the treatment of cancer. Of the many tools currently used in this application, short-interfering RNA (siRNA) are among the most commonly employed due to their ability to silence oncogenic mRNA with high precision through the RNA interference (RNAi) pathway potentially leading to cancer cell death. Our work revolves around silencing the Glucose-Regulated Proteins (GRPs) whose expressions are upregulated in cancerous tissues and are implicated in the proliferative, pro-survival, and anti-apoptotic pathways that govern tumor biology. Here we present a variety of applications to improve the potency and functionality of GRP-targeting ...


Expanding The Toolbox With Site-Specific Methods Of Bioconjugation, Tiauna S. Howard 2019 Seton Hall University

Expanding The Toolbox With Site-Specific Methods Of Bioconjugation, Tiauna S. Howard

Seton Hall University Dissertations and Theses (ETDs)

Bioconjugation is an important tool for studying complex biological systems, with site-specificity being the major challenge. Reactions based on amino acid derived organocatalysts have been widely used in organic synthesis, particularly for the asymmetric synthesis of small molecules but this concept has not been vastly explored on biomolecules. To combat these limitations, two chemical strategies are developed to effectively attach synthetic molecules site specifically to proteins. First, a protein modification technique based on conjugation at a non-native functional handle, an aldehyde or ketone, is developed. This functional handle is chemically introduced onto the biomolecules before undergoing the organocatalyzed aldol reaction ...


Analysis Of Septum Defects In Arabidopsis Organ Boundary Mutants, Katherine T. Anderson 2019 University of Mississippi

Analysis Of Septum Defects In Arabidopsis Organ Boundary Mutants, Katherine T. Anderson

Honors Theses

Arabidopsis thaliana, a model plant species, has been heavily studied to determine the genetic contributions that lead to gynoecium development. The Arabidopsis fruit is created from two carpels that form a gynoecium, which contains the stigma, style, and ovary. The ovary is divided into two sub-compartments by a septum, and the ovules develop within the ovary. The fruit’s purpose is to protect, nurture, and eventually disperse the mature ovules, or seeds, and if the septum does not fuse properly, the plant’s fertility will be impacted. SHOOT MERISTEMLESS (STM) and ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1) are two genes that ...


The Role Of Fos And Junb In The Reprogramming Of Acute Myeloid Leukemia Cells, Kayla Bendinelli 2019 Dickinson College

The Role Of Fos And Junb In The Reprogramming Of Acute Myeloid Leukemia Cells, Kayla Bendinelli

Student Honors Theses By Year

Acute Myeloid Leukemia (AML) is the most common form of leukemia in adults and while it has a high remission rate, relapse with therapy resistance is common, indicating the need for more targeted and effective therapies. It is possible to reprogram AML cells in culture to undergo cell cycle arrest, differentiation into “normal” macrophage-like cells, and apoptosis using phorbol 12-myristate 13-acetate (PMA), a diacyl glycerol (DAG) mimic. While this is effective in “curing” leukemia in culture, PMA is too toxic to serve as a therapy in AML patients. During these PMA-induced changes, approximately 1250 genes change in expression. The goal ...


Molecular Signatures Of Calpain 10 Isoforms Sequences, Envisage Functional Similarity And Therapeutic Potential, Bushra Chaudhry, Farina Hanif, Kausar Saboohi 2019 Aga Khan University

Molecular Signatures Of Calpain 10 Isoforms Sequences, Envisage Functional Similarity And Therapeutic Potential, Bushra Chaudhry, Farina Hanif, Kausar Saboohi

Department of Biological & Biomedical Sciences

Calpain 10 plays a role in insulin secretion, action and susceptibility to type 2 diabetes. The mechanism through which it influences the insulin secretion and action is not completely defined. A structural bioinformatics approach is applied to envision its mechanism of action using available tools on NCBI (blastp and blastn), EMBL-EBI, Ensembl, Swiss Model Repository websites, I-TASSER, PROCHECK program and Discovery Studio software. Homology of domain I and II of calpain10 (isoform a) was established with super family cysteine proteinase domains (II a and II b, e=1.30e-77, 1.00e-20). Remaining sequences of domain III and T from (isoform ...


Further Characterization Of The Skeletal Phenotype In A Hurler Syndrome Mouse Model And The Ethical Treatment Of Children In Medicine, Anna Marie McWoods 2019 Missouri State University

Further Characterization Of The Skeletal Phenotype In A Hurler Syndrome Mouse Model And The Ethical Treatment Of Children In Medicine, Anna Marie Mcwoods

MSU Graduate Theses

Mucopolysaccharidosis type I (MPS I) is a rare, autosomal recessive disorder caused by the deficiency of the lysosomal enzyme α-L-iduronidase (IDUA). Absence of IDUA results in the accumulation of dermatan and heparin sulfate and ultimately causes multi-system dysfunction. The most severe form of MPS I is Hurlers syndrome, a rapidly progressive disorder that, if left untreated, is fatal. Current treatment options for diagnosed individuals includes hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT). These treatments are able to ameliorate the majority of symptoms with the exception of the bone phenotype. This investigation aimed to further characterize the bone ...


Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese 2019 Missouri State University

Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese

MSU Graduate Theses

Nanoparticles have become very useful as delivery systems in biomedicine. The nanoparticles can be layered with different compounds to produce a vessel for transport of biological materials. Specifically, gold nanoparticles layered with a reducing agent, lysozyme, and polyelectrolytes can be synthesized to transport lysozyme into a cell. However, zinc oxide nanoparticles are cheaper, biocompatible nanoparticles that can be used for the same process. Here in, zinc oxide nanoparticle conjugates were synthesized, modified, and analyzed to be used as a biological material delivery system. The zinc oxide nanoparticles were synthesized using zinc chloride and sodium hydroxide. The particles were then layered ...


Kinetics Of Hiv-1 Uncoating In C20 Microglial Cells, Melanie Anne Taylor 2019 Missouri State University

Kinetics Of Hiv-1 Uncoating In C20 Microglial Cells, Melanie Anne Taylor

MSU Graduate Theses

Uncoating is a poorly understood yet required step of HIV-1 replication that is defined as the disassembly of the viral capsid structure. The goal of this project is to characterize uncoating in C20 microglial cells. These cells are a natural target of HIV-1 that are infected to establish latent viral reservoirs and HIV-associated neurological disorders. A stable C20 cell line that expresses TRIM-CypA was established to study the kinetics of uncoating with the CsA washout assay. The expression of TRIM-CypA was confirmed by western blot and the functionality of the protein was confirmed by a viral infectivity assay. Using this ...


Stochastic Modeling Of Neuronal Transport In Various Cellular Geometries, Abhishek Choudhary Mr., Peter Kramer 2019 Rensselaer Polytechnic Institute

Stochastic Modeling Of Neuronal Transport In Various Cellular Geometries, Abhishek Choudhary Mr., Peter Kramer

Biology and Medicine Through Mathematics Conference

No abstract provided.


Modeling Mechanisms Behind Force Generation By Actin Polymerization, Seyed Fowad Motahari 2019 Washington University in St. Louis

Modeling Mechanisms Behind Force Generation By Actin Polymerization, Seyed Fowad Motahari

Arts & Sciences Electronic Theses and Dissertations

Actin polymerization is the primary mechanism for overcoming the large turgor pressure that opposes endocytosis in yeast. While generation of pushing forces by actin polymerization is fairly well understood, it is not clear how actin polymerization produces pulling forces. In order to understand this process, it is necessary to simulate polymerization of filaments having various types of interactions with the membrane. Since existing methodologies in the literature do not treat such problems correctly, we develop a thermodynamically consistent methodology for treating polymerization of filaments having arbitrary interaction potentials with the membrane. Then I perform stochastic simulations for a system of ...


Digital Commons powered by bepress