Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

12,617 Full-Text Articles 26,476 Authors 1,658,542 Downloads 250 Institutions

All Articles in Biochemistry, Biophysics, and Structural Biology

Faceted Search

12,617 full-text articles. Page 6 of 435.

Regulation Of The Drosophila Imd Pathway By Signaling Amyloids, Anni Kleino, Neal S. Silverman 2019 Aarhus University

Regulation Of The Drosophila Imd Pathway By Signaling Amyloids, Anni Kleino, Neal S. Silverman

Neal Silverman

Fruit flies elicit effective defense responses against numerous microbes. The responses against Gram-negative bacteria are mediated by the Imd pathway, an evolutionarily conserved NF-kappaB pathway recognizing meso-diaminopimelic acid (DAP)-type peptidoglycan from bacterial cell walls. Several reviews already provide a detailed view of ligand recognition and signal transduction during Imd signaling, but the formation and regulation of the signaling complex immediately downstream of the peptidoglycan-sensing receptors is still elusive. In this review, we focus on the formation of the Imd amyloidal signaling center and post-translational modifications in the assembly and disassembly of the Imd signaling complex.


Selective Inhibition Of N-Linked Glycosylation Impairs Receptor Tyrosine Kinase Processing, Elsenoor Klaver, Peng Zhao, Melanie May, Heather Flanagan-Steet, Hudson H. Freeze, Reid Gilmore, Lance Wells, Joseph Contessa, Richard Steet 2019 University of Georgia

Selective Inhibition Of N-Linked Glycosylation Impairs Receptor Tyrosine Kinase Processing, Elsenoor Klaver, Peng Zhao, Melanie May, Heather Flanagan-Steet, Hudson H. Freeze, Reid Gilmore, Lance Wells, Joseph Contessa, Richard Steet

Open Access Articles

Global inhibition of N-linked glycosylation broadly reduces glycan occupancy on glycoproteins, but identifying how this inhibition functionally impacts specific glycoproteins is challenging. This limits our understanding of pathogenesis in the congenital disorders of glycosylation (CDG). We used selective exo-enzymatic labeling of cells deficient in the two catalytic subunits of oligosaccharyltransferase - STT3A and STT3B - to monitor the presence and glycosylation status of cell surface glycoproteins. We show reduced abundance of two canonical tyrosine receptor kinases - the insulin receptor and insulin-like growth factor 1 receptor (IGF-1R) - at the cell surface in STT3A-null cells, due to decreased N-linked glycan site occupancy and proteolytic ...


Induction Of Ethylene Inhibits Development Of Soybean Sudden Death Syndrome By Inducing Defense-Related Genes And Reducing Fusarium Virguliforme Growth, Noor A. Abdelsamad, Gustavo C. Macintosh, Leonor F.S. Leandro 2019 U.S. Department of Agriculture

Induction Of Ethylene Inhibits Development Of Soybean Sudden Death Syndrome By Inducing Defense-Related Genes And Reducing Fusarium Virguliforme Growth, Noor A. Abdelsamad, Gustavo C. Macintosh, Leonor F.S. Leandro

Gustavo Macintosh

Ethylene is a gaseous hormone that regulates plant responses to biotic and abiotic stresses. To investigate the importance of ethylene in soybean resistance to Fusarium virguliforme (Fv), the causal agent of sudden death syndrome (SDS), soybean cultivars Williams 82 (SDS-susceptible) and MN1606 (SDS-resistant) were treated 24 h before and 24h after Fv inoculation with either ethephon (ethylene inducer), cobalt chloride (ethylene biosynthesis inhibitor), or 1-MCP (ethylene perception inhibitor). Inoculated plants were grown for 21 days at 24°C in the greenhouse and then evaluated for SDS severity and expression of soybean defense genes. In both cultivars, plants treated with ethephon ...


Yeast Sirtuin Family Members Maintain Transcription Homeostasis To Ensure Genome Stability, Jessica L. Feldman, Craig L. Peterson 2019 University of Massachusetts Medical School

Yeast Sirtuin Family Members Maintain Transcription Homeostasis To Ensure Genome Stability, Jessica L. Feldman, Craig L. Peterson

Program in Molecular Medicine Publications and Presentations

The mammalian sirtuin, SIRT6, is a key tumor suppressor that maintains genome stability and regulates transcription, though how SIRT6 family members control genome stability is unclear. Here, we use multiple genome-wide approaches to demonstrate that the yeast SIRT6 homologs, Hst3 and Hst4, prevent genome instability by tuning levels of both coding and noncoding transcription. While nascent RNAs are elevated in the absence of Hst3 and Hst4, a global impact on steady-state mRNAs is masked by the nuclear exosome, indicating that sirtuins and the exosome provide two levels of regulation to maintain transcription homeostasis. We find that, in the absence of ...


The Molecular Basis Of Human Igg-Mediated Enhancement Of C4b-Binding Protein Recruitment To Group A Streptococcus, David Ermert, Maisem Laabei, Antonin Weckel, Matthias Morgelin, Martin Lundqvist, Lars Bjorck, Sanjay Ram, Sara Linse, Anna M. Blom 2019 University of Massachusetts Medical School

The Molecular Basis Of Human Igg-Mediated Enhancement Of C4b-Binding Protein Recruitment To Group A Streptococcus, David Ermert, Maisem Laabei, Antonin Weckel, Matthias Morgelin, Martin Lundqvist, Lars Bjorck, Sanjay Ram, Sara Linse, Anna M. Blom

Open Access Articles

Streptococcus pyogenes infects over 700 million people worldwide annually. Immune evasion strategies employed by the bacteria include binding of the complement inhibitors, C4b-binding protein (C4BP) and Factor H in a human-specific manner. We recently showed that human IgG increased C4BP binding to the bacterial surface, which promoted streptococcal immune evasion and increased mortality in mice. We sought to identify how IgG promotes C4BP binding to Protein H, a member of the M protein family. Dimerization of Protein H is pivotal for enhanced binding to human C4BP. First, we illustrated that Protein H, IgG, and C4BP formed a tripartite complex. Second ...


Modulation Of Biological Responses To 2 Ns Electrical Stimuli By Field Reversal, Esin B. Sözer, P. Thomas Vernier 2019 Old Dominion University

Modulation Of Biological Responses To 2 Ns Electrical Stimuli By Field Reversal, Esin B. Sözer, P. Thomas Vernier

Bioelectrics Publications

Nanosecond bipolar pulse cancellation, a recently discovered Phenomenon, is modulation of the effects of a unipolar electric pulse exposure by a second pulse of opposite polarity. This attenuation of biological response by reversal of the electric field direction has been reported with pulse durations from 60 ns to 900 ns for a wide range of endpoints, and it is not observed with conventional electroporation pulses of much longer duration (> 100 mu s) where pulses are additive regardless of polarity. The most plausible proposed mechanisms involve the field-driven migration of ions to and from the membrane interface (accelerated membrane discharge). Here ...


Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery 2019 California Polytechnic State University, San Luis Obispo

Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery

Materials Engineering

Amyloid nanofibrils are natural materials capable of self-assembling into precise structures with tunable functionalities, while exhibiting excellent mechanical properties. In combination with highly conductive graphene oxide (GO), the 1-D amyloid nanofibrils and 2-D nanosheets of GO can produce a robust and bio-functional nanohybrid, hypothesized to exhibit multi-domain functional properties useful for enzyme sensing, water purification, drug delivery, and tissue scaffolding applications. Here, we examine the properties of an amyloid-graphene oxide nanohybrid film made with amyloids derived from hen egg white lysozymes in an attempt to explore the diverse toolbox of amyloid derivatives and establish ideal fabrication methods and formulations of ...


Study Of Paper Microbial Fuel Cells For Use In On-Site Wastewater Testing, William A. Tolmasoff, William A. Tolmasoff 2019 California Polytechnic State University, San Luis Obispo

Study Of Paper Microbial Fuel Cells For Use In On-Site Wastewater Testing, William A. Tolmasoff, William A. Tolmasoff

Master's Theses and Project Reports

This study demonstrated a technique for fabricating simple, low-cost Paper Microbial fuel cells (PMFC’s) in the model of a previous study to, for the first time, produce voltage from wastewater effluent. The PMFC’s were created by stacking and gluing the main components of an MFC together: reservoir layer; anode; cation exchange membrane (CEM); air cathode. A wax printer was used to create the hydrophobic borders of the PMFC’s on filter paper, and graphite paint was applied to the paper to create the anode. The CEM’s considered were filter paper, wax, and Nafion, with Nafion being the ...


The Statistical Optimisation Of Recombinant Β-Glucosidase Production Through A Two-Stage, Multi-Model, Design Of Experiments Approach, Albert Uhoraningoga, Gemma K. Kinsella, Jesus Frias, Gary T. Henehan, Barry J. Ryan 2019 Technological University Dublin

The Statistical Optimisation Of Recombinant Β-Glucosidase Production Through A Two-Stage, Multi-Model, Design Of Experiments Approach, Albert Uhoraningoga, Gemma K. Kinsella, Jesus Frias, Gary T. Henehan, Barry J. Ryan

Articles

β-glucosidases are a class of enzyme that are widely distributed in the living world, with examples noted in plants, fungi, animals and bacteria. They offer both hydrolysis and synthesis capacity for a wide range of biotechnological processes. However, the availability of native, or the production of recombinant β-glucosidases, is currently a bottleneck in the widespread industrial application of this enzyme. In this present work, the production of recombinant β-glucosidase from Streptomyces griseus was optimised using a Design of Experiments strategy, comprising a two-stage, multi-model design. Three screening models were comparatively employed: Fractional Factorial, Plackett-Burman and Definitive Screening Design. Four variables ...


Electrochemically Reactive Membranes For Efficient Biomass Recovery, Pollutant Degradation And Commercialization, Likun Hua 2019 New Jersey Institute of Technology

Electrochemically Reactive Membranes For Efficient Biomass Recovery, Pollutant Degradation And Commercialization, Likun Hua

Dissertations

Micropollution in natural waters such as rivers and groundwater aquifers is a widespread problem that prevents these potentially potable sources from being used as drinking water. In the United States, approximately two-thirds of the over 1,200 most serious hazardous waste sites in the nation are contaminated with trichloroethylene (TCE), a potentially carcinogenic compound. Other emerging and environmentally persistent organic micropollutants include polyromantic hydrocarbons (PAHs), organophosphate flame retardants, endocrine disrupting compounds (EDCs), pesticides, herbicides, pharmaceuticals and personal care products (PPCPs). Membrane filtration is one of the most efficient separation processes widely used for water treatment and pollutant removal. However, traditional ...


Genistein Has Antiviral Activity Against Herpes B Virus And Acts Synergistically With Antiviral Treatments To Reduce Effective Dose, Julia C. LeCher, Nga Diep, Peter W. Krug, Julia K. Hilliard 2019 Kennesaw State University

Genistein Has Antiviral Activity Against Herpes B Virus And Acts Synergistically With Antiviral Treatments To Reduce Effective Dose, Julia C. Lecher, Nga Diep, Peter W. Krug, Julia K. Hilliard

Faculty Publications

Herpes B virus is a deadly zoonotic agent that can be transmitted to humans from the macaque monkey, an animal widely used in biomedical research. Currently, there is no cure for human B virus infection and treatments require a life-long daily regimen of antivirals, namely acyclovir and ganciclovir. Long-term antiviral treatments have been associated with significant debilitating side effects, thus, there is an ongoing search for alternative efficacious antiviral treatment. In this study, the antiviral activity of genistein was quantified against B virus in a primary cell culture model system. Genistein prevented plaque formation of B virus and reduced virus ...


Differentially Activating The Oncogenic Kinase Akt1, Nileeka Balasuriya 2019 The University of Western Ontario

Differentially Activating The Oncogenic Kinase Akt1, Nileeka Balasuriya

Electronic Thesis and Dissertation Repository

The proto-oncogene Akt/protein kinase B plays a pivotal role in cell growth and survival. Phosphorylation of Akt at Thr308 and Ser473 activates the kinase following growth factor stimulation. Delineating specific role of each activation site in Akt1 on kinase activation, inhibition and substrate selection remain elusive.

We designed a unique set of tools, relying on genetic code expansion with phosphoserine and in vivo enzymatic phosphorylation, to produce differentially phosphorylated Akt1 variants. We found that having both sites phosphorylated increased the apparent catalytic rate of the enzyme by 1500-fold relative to the unphosphorylated enzyme. This increment was mainly due to ...


Examining Lateral Line Development Through Cxcl14 Modulation Of Cxcl12-Cxcr4 Mediated Gene Expression In Danio Rerio, Ariana Calderon-Zavala 2019 Lawrence University

Examining Lateral Line Development Through Cxcl14 Modulation Of Cxcl12-Cxcr4 Mediated Gene Expression In Danio Rerio, Ariana Calderon-Zavala

Lawrence University Honors Projects

The lateral line is a mechanosensory system used by fish to sense the movement of water. It is evolutionarily related to the inner-ear in humans. For both organisms, the binding of the CXCL12 (SDF-1 ligand) to the CXCR4 receptor induces conformational changes needed to activate signal transduction. This signaling results in numerous cellular responses such as cell fate, chemotaxis, and gene transcription. Interestingly, researchers have found that another signaling molecule, CXCL14, can also bind to the CXCR4 receptor with high affinity (Tanegashima et al., 2013). As a result, we hypothesize that CXCL14 modulates CXCL12-mediated chemotaxis, presumably acting as an allosteric ...


Nf-Κb In Biomphalaria Glabrata: A Genetic Fluke?, Paige Stocker 2019 Lawrence University

Nf-Κb In Biomphalaria Glabrata: A Genetic Fluke?, Paige Stocker

Lawrence University Honors Projects

Biomphalaria glabrata is the intermediate host to the disease causing parasitic worm, Schistosoma mansoni. Previous work has identified homologs of NF-κB, a known immune related transcription factor, in B. glabrata and work has also been done to establish putative κB sites. It has also been observed that the p65 homologous subunit has an extended N-terminal region not present in other homologs. The goal of the present study is twofold: investigate DNA binding affinity of two NF-κB subunits, Bg-p65 and Bg-p50, and characterize the nature of the N-terminal extension of Bg-p65. In the current work, it is shown through the use ...


Acid Sphingomyelinase Regulates The Localization And Trafficking Of Palmitoylated Proteins, Xiahui Xiong, Chia-Fang Lee, Wenjing Li, Jiekai Yu, Linyu Zhu, Yongsoon Kim, Hul Zhang, Hong Sun 2019 University of Nevada, Las Vegas

Acid Sphingomyelinase Regulates The Localization And Trafficking Of Palmitoylated Proteins, Xiahui Xiong, Chia-Fang Lee, Wenjing Li, Jiekai Yu, Linyu Zhu, Yongsoon Kim, Hul Zhang, Hong Sun

Chemistry and Biochemistry Faculty Publications

In human, loss of Acid Sphingomeylinase (ASM/SMPD1) causes Niemann-Pick Disease, type A. ASM hydrolyzes sphingomyelins to produce ceramides but protein targets of ASM remain largely unclear. ... See full text for complete abstract.


An Order-To-Disorder Structural Switch Activates The Foxm1 Transcription Factor, Aimee H. Marceau, Caileen M. Brison, Santrupti Nerli, Heather E. Arsenault, Andrew C. McShan, Eefei Chen, Hsiau-Wei Lee, Jennifer A. Benanti, Nikolaos G. Sgourakis, Seth M. Rubin 2019 University of California, Santa Cruz

An Order-To-Disorder Structural Switch Activates The Foxm1 Transcription Factor, Aimee H. Marceau, Caileen M. Brison, Santrupti Nerli, Heather E. Arsenault, Andrew C. Mcshan, Eefei Chen, Hsiau-Wei Lee, Jennifer A. Benanti, Nikolaos G. Sgourakis, Seth M. Rubin

Open Access Articles

Intrinsically disordered transcription factor transactivation domains (TADs) function through structural plasticity, adopting ordered conformations when bound to transcriptional co-regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically disordered domains, they associate and adopt a structured conformation. We identify how Plk1 and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered conformation that ...


Adipocyte Acly Facilitates Dietary Carbohydrate Handling To Maintain Metabolic Homeostasis In Females, Sully Fernandez, John M. Viola, AnnMarie Torres, Martina Wallace, Sophie Trefely, Steven Zhao, Hayley C. Affronti, Jivani M. Gengatharan, David A. Guertin, Nathaniel W. Snyder, Christian M. Metallo, Kathryn E. Wellen 2019 University of Pennsylvania

Adipocyte Acly Facilitates Dietary Carbohydrate Handling To Maintain Metabolic Homeostasis In Females, Sully Fernandez, John M. Viola, Annmarie Torres, Martina Wallace, Sophie Trefely, Steven Zhao, Hayley C. Affronti, Jivani M. Gengatharan, David A. Guertin, Nathaniel W. Snyder, Christian M. Metallo, Kathryn E. Wellen

Open Access Articles

Sugars and refined carbohydrates are major components of the modern diet. ATP-citrate lyase (ACLY) is upregulated in adipocytes in response to carbohydrate consumption and generates acetyl-coenzyme A (CoA) for both lipid synthesis and acetylation reactions. Here, we investigate the role of ACLY in the metabolic and transcriptional responses to carbohydrates in adipocytes and unexpectedly uncover a sexually dimorphic function in maintaining systemic metabolic homeostasis. When fed a high-sucrose diet, Acly(FAT-/-) females exhibit a lipodystrophy-like phenotype, with minimal fat accumulation, insulin resistance, and hepatic lipid accumulation, whereas Acly(FAT-/-) males have only mild metabolic phenotypes. We find that ACLY is ...


Serum Deprivation Of Mesenchymal Stem Cells Improves Exosome Activity And Alters Lipid And Protein Composition, Reka A. Haraszti, Rachael Miller, Michelle L. Dubuke, Andrew H. Coles, Marie C. Didiot, Dimas Echeverria, Matteo Stoppato, Yves Y. Sere, John D. Leszyk, Julia F. Alterman, Bruno M. D. C. Godinho, Matthew R. Hassler, Rachel Wollacott, Yan Wang, Scott A. Shaffer, Neil Aronin, Anastasia Khvorova 2019 University of Massachusetts Medical School

Serum Deprivation Of Mesenchymal Stem Cells Improves Exosome Activity And Alters Lipid And Protein Composition, Reka A. Haraszti, Rachael Miller, Michelle L. Dubuke, Andrew H. Coles, Marie C. Didiot, Dimas Echeverria, Matteo Stoppato, Yves Y. Sere, John D. Leszyk, Julia F. Alterman, Bruno M. D. C. Godinho, Matthew R. Hassler, Rachel Wollacott, Yan Wang, Scott A. Shaffer, Neil Aronin, Anastasia Khvorova

Open Access Articles

Exosomes can serve as delivery vehicles for advanced therapeutics. The components necessary and sufficient to support exosomal delivery have not been established. Here we connect biochemical composition and activity of exosomes to optimize exosome-mediated delivery of small interfering RNAs (siRNAs). This information is used to create effective artificial exosomes. We show that serum-deprived mesenchymal stem cells produce exosomes up to 22-fold more effective at delivering siRNAs to neurons than exosomes derived from control cells. Proteinase treatment of exosomes stops siRNA transfer, indicating that surface proteins on exosomes are involved in trafficking. Proteomic and lipidomic analyses show that exosomes derived in ...


Novel Amphiphilic Cyclobutene And Cyclobutane Cis-C18 Fatty Acid Derivatives Inhibit Mycobacterium Avium Subsp. Paratuberculosis Growth, Denise K. Zinniel, Wantanee Sittiwong, Darrell D. Marshall, Govardhan Rathnaiah, Isin Sakallioglu, Robert Powers, Patrick H. Dussault, Raul G. Barletta 2019 University of Nebraska - Lincoln

Novel Amphiphilic Cyclobutene And Cyclobutane Cis-C18 Fatty Acid Derivatives Inhibit Mycobacterium Avium Subsp. Paratuberculosis Growth, Denise K. Zinniel, Wantanee Sittiwong, Darrell D. Marshall, Govardhan Rathnaiah, Isin Sakallioglu, Robert Powers, Patrick H. Dussault, Raul G. Barletta

Papers in Veterinary and Biomedical Science

Mycobacterium avium subspecies paratuberculosis (Map) is the etiologic agent of Johne’s disease in ruminants and has been associated with Crohn’s disease in humans. An ective control of Map by either vaccines or chemoprophylaxis is a paramount need for veterinary and possibly human medicine. Given the importance of fatty acids in the biosynthesis of mycolic acids and the mycobacterial cell wall, we tested novel amphiphilic C10 and C18 cyclobutene and cyclobutane fatty acid derivatives for Map inhibition. Microdilution minimal inhibitory concentrations (MIC) with 5 or 7 week endpoints were measured in Middlebrook 7H9 base broth media. We compared the ...


Induction Of Ethylene Inhibits Development Of Soybean Sudden Death Syndrome By Inducing Defense-Related Genes And Reducing Fusarium Virguliforme Growth, Noor A. Abdelsamad, Gustavo C. Macintosh, Leonor F.S. Leandro 2019 U.S. Department of Agriculture

Induction Of Ethylene Inhibits Development Of Soybean Sudden Death Syndrome By Inducing Defense-Related Genes And Reducing Fusarium Virguliforme Growth, Noor A. Abdelsamad, Gustavo C. Macintosh, Leonor F.S. Leandro

Biochemistry, Biophysics and Molecular Biology Publications

Ethylene is a gaseous hormone that regulates plant responses to biotic and abiotic stresses. To investigate the importance of ethylene in soybean resistance to Fusarium virguliforme (Fv), the causal agent of sudden death syndrome (SDS), soybean cultivars Williams 82 (SDS-susceptible) and MN1606 (SDS-resistant) were treated 24 h before and 24h after Fv inoculation with either ethephon (ethylene inducer), cobalt chloride (ethylene biosynthesis inhibitor), or 1-MCP (ethylene perception inhibitor). Inoculated plants were grown for 21 days at 24°C in the greenhouse and then evaluated for SDS severity and expression of soybean defense genes. In both cultivars, plants treated with ethephon ...


Digital Commons powered by bepress