Open Access. Powered by Scholars. Published by Universities.®

Organic Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Organic Chemistry

Crystal Structure Of Zymonic Acid And A Redetermination Of Its Precursor, Pyruvic Acid, Dominik Heger, Alexis J. Eugene, Sean R. Parkin, Marcelo I. Guzman Jun 2019

Crystal Structure Of Zymonic Acid And A Redetermination Of Its Precursor, Pyruvic Acid, Dominik Heger, Alexis J. Eugene, Sean R. Parkin, Marcelo I. Guzman

Chemistry Faculty Publications

The structure of zymonic acid (systematic name: 4-hy­droxy-2-methyl-5-oxo-2,5-di­hydro­furan-2-carb­oxy­lic acid), C6H6O5, which had previously eluded crystallographic determination, is presented here for the first time. It forms by intra­molecular condensation of parapyruvic acid, which is the product of aldol condensation of pyruvic acid. A redetermination of the crystal structure of pyruvic acid (systematic name: 2-oxo­propanoic acid), C3H4O3, at low temperature (90 K) and with increased precision, is also presented [for the previous structure, see: Harata et al. (1977). Acta Cryst. B33, 210–212 ...


Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker Nov 2017

Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK ...


Synthesis And Structure Of A Substituted Pyridazine, Kiranmai Byrichetti Aug 2011

Synthesis And Structure Of A Substituted Pyridazine, Kiranmai Byrichetti

Masters Theses & Specialist Projects

Pyridazines are heterocyclic compounds with an N-N bond in their ring structure. Heterocyclic aromatic compounds are of great interest as a result of their novel properties and commercial applications. Our current research is focused on the potential role of pyridazines in next generation electronic devices that utilize organics as the semiconducting material. The synthesis of 5, 6-fused ring pyridazines beginning from fulvenes (Scheme 1) is described herein. These fused heterocycles will serve as synthetic models and building blocks for potential organic or organometallic conducting polymers.

Our goal was to modify the route of Snyder et al. previously reported for the ...


Polymorphs And Hydrates Of Acyclovir, Katie M. Lutker, Rosalynn Quiñones-Fernández, Jiadi Xu, Ayyalusamy Ramamoorthy, Adam J. Matzger Mar 2011

Polymorphs And Hydrates Of Acyclovir, Katie M. Lutker, Rosalynn Quiñones-Fernández, Jiadi Xu, Ayyalusamy Ramamoorthy, Adam J. Matzger

Chemistry Faculty Research

Acyclovir (ACV) has been commonly used as an antiviral for decades. Although the crystal structure of the commercial form, a 3:2 ACV/water solvate, has been known since 1980s, investigation into the structure of anhydrous ACV has been limited. Here, we report the characterization of four anhydrous forms of ACV and a new hydrate in addition to the known hydrate. Two of the anhydrous forms appear as small needles and are stable to air exposure, whereas the third form is morphologically similar but quickly absorbs water from the atmosphere and converts back to the commercial form. The high-temperature modification ...


Sequence And Structural Analysis Of The Chitinase Insertion Domain Reveals Two Conserved Motifs Involved In Chitin Binding, Hai Li, Lesley H. Greene Jan 2010

Sequence And Structural Analysis Of The Chitinase Insertion Domain Reveals Two Conserved Motifs Involved In Chitin Binding, Hai Li, Lesley H. Greene

Chemistry & Biochemistry Faculty Publications

Background: Chitinases are prevalent in life and are found in species including archaea, bacteria, fungi, plants, and animals. They break down chitin, which is the second most abundant carbohydrate in nature after cellulose. Hence, they are important for maintaining a balance between carbon and nitrogen trapped as insoluble chitin in biomass. Chitinases are classified into two families, 18 and 19 glycoside hydrolases. In addition to a catalytic domain, which is a triosephosphate isomerase barrel, many family 18 chitinases contain another module, i.e., chitinase insertion domain. While numerous studies focus on the biological role of the catalytic domain in chitinase ...