Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Assembly Of Human C-Terminal Binding Protein (Ctbp) Into Tetramers, Andrew G. Bellesis, Anne M. Jecrois, Janelle A. Hayes, Celia A. Schiffer, William E. Royer Jun 2018

Assembly Of Human C-Terminal Binding Protein (Ctbp) Into Tetramers, Andrew G. Bellesis, Anne M. Jecrois, Janelle A. Hayes, Celia A. Schiffer, William E. Royer

Schiffer Lab Publications

C-terminal binding protein 1 (CtBP1) and CtBP2 are transcriptional coregulators that repress numerous cellular processes, such as apoptosis, by binding transcription factors and recruiting chromatin-remodeling enzymes to gene promoters. The NAD(H)-linked oligomerization of human CtBP is coupled to its co-transcriptional activity, which is implicated in cancer progression. However, the biologically relevant level of CtBP assembly has not been firmly established; nor has the stereochemical arrangement of the subunits above that of a dimer. Here, multi-angle light scattering (MALS) data established the NAD(+)- and NADH-dependent assembly of CtBP1 and CtBP2 into tetramers. An examination of subunit interactions within CtBP1 ...


Development Of Neurotensin-Based Radiopharmaceuticals For Neurotensin-Receptor-1-Positive Tumors Targeting, Yinnong Jia May 2017

Development Of Neurotensin-Based Radiopharmaceuticals For Neurotensin-Receptor-1-Positive Tumors Targeting, Yinnong Jia

Theses & Dissertations

The neurotensin receptor 1 (NTR1) is overexpressed in many cancers, due to its role as a growth pathway. These NTR1-positive cancers include pancreatic, colon, prostate and breast cancers. In the radiopharmaceutical field, the overexpression of NTR1 in cancer has prompted the development of NTR1-targeted diagnostics and therapeutics. The neurotensin (NT) peptide exhibits low nanomolar affinity for NTR1 and has been the paradigm for NTR1-targeted agents. Since the 1980’s, radiolabeled NT analogs have been developed and evaluated for targeting NTR1-positive cancers. Since native NT is rapidly degraded in vivo by a variety of peptidases, a tremendous amount of effort has ...