Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Structural Determination Of The Broadly Reactive Anti-Ighv1-69 Anti-Idiotypic Antibody G6 And Its Idiotope, Yuval Avnir, Kristina L. Prachanronarong, Shurong Hou, Brendan J. Hilbert, Markus-Frederik Bohn, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang, Nese Kurt Yilmaz, Celia A. Schiffer, Wayne A. Marasco Dec 2017

Structural Determination Of The Broadly Reactive Anti-Ighv1-69 Anti-Idiotypic Antibody G6 And Its Idiotope, Yuval Avnir, Kristina L. Prachanronarong, Shurong Hou, Brendan J. Hilbert, Markus-Frederik Bohn, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang, Nese Kurt Yilmaz, Celia A. Schiffer, Wayne A. Marasco

Schiffer Lab Publications

The heavy chain IGHV1-69 germline gene exhibits a high level of polymorphism and shows biased use in protective antibody (Ab) responses to infections and vaccines. It is also highly expressed in several B cell malignancies and autoimmune diseases. G6 is an anti-idiotypic monoclonal Ab that selectively binds to IGHV1-69 heavy chain germline gene 51p1 alleles that have been implicated in these Ab responses and disease processes. Here, we determine the co-crystal structure of humanized G6 (hG6.3) in complex with anti-influenza hemagglutinin stem-directed broadly neutralizing Ab D80. The core of the hG6.3 idiotope is a continuous string of CDR-H2 ...


Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer Jul 2017

Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a ...


Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer Jun 2017

Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency ...


Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer May 2017

Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer

University of Massachusetts Medical School Faculty Publications

Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency ...


Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer Apr 2017

Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer

University of Massachusetts Medical School Faculty Publications

The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a ...


Docking Studies Of Isoform-Selectivity Of Phosphatidylinositol 3-Kinase (Pi3k) Inhibitors, Kaitlin Goettsch Mar 2017

Docking Studies Of Isoform-Selectivity Of Phosphatidylinositol 3-Kinase (Pi3k) Inhibitors, Kaitlin Goettsch

Student Research and Creative Activity Fair

Phosphatidylinositol 3-kinases (PI3Ks) and their related pathways are reputed targets for drug-based anticancer therapies. Mutations in PI3K genes, expression, and pathways are frequent among multiple cancer types. Four isoforms of PI3Ks exist: α, β, γ, & δ and studies have identified several ligands for each isoform which are capable of serving as inhibitory therapeutic compounds. However, the biochemical efficacy of these molecules varies and the isoform selectivity is not well understood. In this study, we applied in silico docking methods and free energy calculation methods to estimate the binding of reported PI3K ligands against 5 PI3K structures: PI3Kα (PBD ID: 2RD0 ...