Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker Nov 2017

Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK ...


Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury Jul 2017

Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury

Mathematics, Physics, and Computer Science Faculty Articles and Research

Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions ofmenthol. There has been new evidence demonstrating thatmenthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at ...


Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer Jul 2017

Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a ...


Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer Jun 2017

Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency ...


Diverse Stimuli Engage Different Neutrophil Extracellular Trap Pathways, Elaine F. Kenny, Alf Herzig, Renate Krüger, Aaron Muth, Santanu Mondal, Paul R. Thompson, Volker Brinkmann, Horst Von Bernuth, Arturo Zychlinsky Jun 2017

Diverse Stimuli Engage Different Neutrophil Extracellular Trap Pathways, Elaine F. Kenny, Alf Herzig, Renate Krüger, Aaron Muth, Santanu Mondal, Paul R. Thompson, Volker Brinkmann, Horst Von Bernuth, Arturo Zychlinsky

Thompson Lab Publications

Neutrophils release neutrophil extracellular traps (NETs) which ensnare pathogens and have pathogenic functions in diverse diseases. We examined the NETosis pathways induced by five stimuli; PMA, the calcium ionophore A23187, nigericin, Candida albicans and Group B Streptococcus. We studied NET production in neutrophils from healthy donors with inhibitors of molecules crucial to PMA induced NETs including protein kinase C, calcium, reactive oxygen species, the enzymes myeloperoxidase (MPO) and neutrophil elastase. Additionally, neutrophils from chronic granulomatous disease patients, carrying mutations in the NADPH oxidase complex or a MPO-deficient patient were examined. We show that PMA, C. albicans and GBS use a ...


Detection Of Cathinone And Mephedrone In Plasma By Lc-Ms/Ms Using Standard Addition Quantification Technique, Theron W. Ng-A-Qui May 2017

Detection Of Cathinone And Mephedrone In Plasma By Lc-Ms/Ms Using Standard Addition Quantification Technique, Theron W. Ng-A-Qui

Student Theses

Designer drugs are structural analogs of Drug Enforcement Agency (DEA) Schedule I and II substances. They are synthesized to mimic the effects of illegal drugs of abuse and to bypass the provisions of drug regulations. Despite the increased availability of designer drugs, few studies have focused on specific analytical extraction techniques for their detection and quantification in biological samples. Solid phase extraction (SPE) is the most commonly used technique for sample preparation. The purpose of this study is to evaluate the extraction efficiency of the various SPE columns with different sorbent materials for two designer drugs, cathinone and mephedrone in ...


Role Of Peptidylarginine Deiminase 2 (Pad2) In Mammary Carcinoma Cell Migration, Sachi Horibata, Katherine E. Rogers, David Sadegh, Lynne J. Anguish, John L. Mcelwee, Pragya Shah, Paul R. Thompson, Scott A. Coonrod May 2017

Role Of Peptidylarginine Deiminase 2 (Pad2) In Mammary Carcinoma Cell Migration, Sachi Horibata, Katherine E. Rogers, David Sadegh, Lynne J. Anguish, John L. Mcelwee, Pragya Shah, Paul R. Thompson, Scott A. Coonrod

Thompson Lab Publications

BACKGROUND: Penetration of the mammary gland basement membrane by cancer cells is a crucial first step in tumor invasion. Using a mouse model of ductal carcinoma in situ, we previously found that inhibition of peptidylarginine deiminase 2 (PAD2, aka PADI2) activity appears to maintain basement membrane integrity in xenograft tumors. The goal of this investigation was to gain insight into the mechanisms by which PAD2 mediates this process.

METHODS: For our study, we modulated PAD2 activity in mammary ductal carcinoma cells by lentiviral shRNA-mediated depletion, lentiviral-mediated PAD2 overexpression, or PAD inhibition and explored the effects of these treatments on changes ...


Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer May 2017

Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer

University of Massachusetts Medical School Faculty Publications

Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency ...


Synthesis And In-Vitro Cell Viability/Cytotoxicity Studies Of Novel Pyrrolobenzodiazepine Derivatives, John M. Jarrett May 2017

Synthesis And In-Vitro Cell Viability/Cytotoxicity Studies Of Novel Pyrrolobenzodiazepine Derivatives, John M. Jarrett

Undergraduate Honors Theses

Pyrrolobenzodiazepines (PBDs) are a group of naturally occurring compounds that were discovered in the cultures of Streptomyces in the 1960s. Some natural PBDs discovered in these cultures, such as anthramycin and sibiromycin, were shown to possess a broad spectrum of anti-tumor activity. Since cancer is still a leading cause of death globally, the development of novel anti-proliferative derivatives of PBDs is essential for human welfare worldwide. Further synthesis and structure-activity relationship (SAR) studies of the parent natural products and their tetracyclic analogs will lead to the discovery of drug candidates. In this work, thirteen PBD analogues were synthesized using no ...


Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer Apr 2017

Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer

University of Massachusetts Medical School Faculty Publications

The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a ...


Docking Studies Of Isoform-Selectivity Of Phosphatidylinositol 3-Kinase (Pi3k) Inhibitors, Kaitlin Goettsch Mar 2017

Docking Studies Of Isoform-Selectivity Of Phosphatidylinositol 3-Kinase (Pi3k) Inhibitors, Kaitlin Goettsch

Student Research and Creative Activity Fair

Phosphatidylinositol 3-kinases (PI3Ks) and their related pathways are reputed targets for drug-based anticancer therapies. Mutations in PI3K genes, expression, and pathways are frequent among multiple cancer types. Four isoforms of PI3Ks exist: α, β, γ, & δ and studies have identified several ligands for each isoform which are capable of serving as inhibitory therapeutic compounds. However, the biochemical efficacy of these molecules varies and the isoform selectivity is not well understood. In this study, we applied in silico docking methods and free energy calculation methods to estimate the binding of reported PI3K ligands against 5 PI3K structures: PI3Kα (PBD ID: 2RD0 ...


Synthesis Of Multifunctional Polyacrylates And A Binding Group To Hemoglobin For The Treatment Of Traumatic Brain Injuries, Marina Michaud Jan 2017

Synthesis Of Multifunctional Polyacrylates And A Binding Group To Hemoglobin For The Treatment Of Traumatic Brain Injuries, Marina Michaud

University Honors Program Theses

Hemoglobin based oxygen carriers (HBOCs) hold promise as an effective emergency treatment of severe traumatic brain injuries (TBI). In the latest generation of HBOCs, polynitroxyl-pegylated hemoglobin (PNPH), cell-free hemoglobin is modified with TEMPO and PEG which reduce the toxicities associated with earlier generations of HBOCs. In our efforts to optimize the economic and therapeutic impacts of PNPH’s we have synthesized polydimethylaminoethyl methacrylate (poly-DMAEMA) under controlled living conditions via reverse addition-fragmentation chain transfer (RAFT) polymerization. The poly-DMAEMA was then successfully functionalized via quaternization of its NMe2 groups using chloroacetate derivatives of the TEMPO and PEG. This process was quantitative ...


Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski Jan 2017

Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski

Theses and Dissertations--Pharmacy

RNA nanotechnology is an emerging field that holds great promise for advancing drug delivery and materials science. Recently, RNA nanoparticles have seen increased use as an in vivo delivery system. RNA was once thought to have little potential for in vivo use due to biological and thermodynamic stability issues. However, these issues have been solved by: (1) Finding of a thermodynamically stable three-way junction (3WJ) motif; (2) Chemical modifications to RNA confer enzymatic stability in vivo; and (3) the finding that RNA nanoparticles exhibit low immunogenicity in vivo.

In vivo biodistribution and pharmacokinetics are affected by the physicochemical properties, such ...


Design, Synthesis, And Biological Activity Of 1,2,3-Triazolobenzodiazepine Bet Bromodomain Inhibitors [Accepted Manuscript], Phillip P. Sharp, Jean-Marc Garnier, Tamas Hatfaludi, Zhen Xu, David Segal, Kate E. Jarman, Hélène Jousset, Alexandra Garnham, John T. Feutrill, Anthony Cuzzupe, Peter Hall, Scott Taylor, Carl Walkley, Dean Tyler, Mark A. Dawson, Peter Czabotar, Andrew F. Wilks, Stefan Glaser, David C. S. Huang, Christopher J. Burns Jan 2017

Design, Synthesis, And Biological Activity Of 1,2,3-Triazolobenzodiazepine Bet Bromodomain Inhibitors [Accepted Manuscript], Phillip P. Sharp, Jean-Marc Garnier, Tamas Hatfaludi, Zhen Xu, David Segal, Kate E. Jarman, Hélène Jousset, Alexandra Garnham, John T. Feutrill, Anthony Cuzzupe, Peter Hall, Scott Taylor, Carl Walkley, Dean Tyler, Mark A. Dawson, Peter Czabotar, Andrew F. Wilks, Stefan Glaser, David C. S. Huang, Christopher J. Burns

Faculty of Health Sciences Publications

A number of diazepines are known to inhibit bromo- and extra-terminal domain (BET) proteins. Their BET inhibitory activity derives from the fusion of an acetyl-lysine mimetic heterocycle onto the diazepine framework. Herein we describe a straightforward, modular synthesis of novel 1,2,3-triazolobenzodiazepines and show that the 1,2,3-triazole acts as an effective acetyl-lysine mimetic heterocycle. Structure-based optimization of this series of compounds led to the development of potent BET bromodomain inhibitors with excellent activity against leukemic cells, concomitant with a reduction in c-MYC expression. These novel benzodiazepines therefore represent a promising class of therapeutic BET inhibitors.