Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Protein Arginine Methylation And Citrullination In Epigenetic Regulation, Jakob Fuhrmann, Paul R. Thompson Mar 2016

Protein Arginine Methylation And Citrullination In Epigenetic Regulation, Jakob Fuhrmann, Paul R. Thompson

Thompson Lab Publications

The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states.


Citrullination-Acetylation Interplay Guides E2f-1 Activity During The Inflammatory Response, Fatemeh Ghari, Anne-Marie Quirke, Shonagh Munro, Joanna Kawalkowska, Sarah Picaud, Joanna Mcgouran, Venkataraman Subramanian, Aaron Muth, Richard Williams, Benedikt Kessler, Paul R. Thompson, Panagis Fillipakopoulos, Stefan Knapp, Patrick J. Venables, Nicholas B. La Thangue Feb 2016

Citrullination-Acetylation Interplay Guides E2f-1 Activity During The Inflammatory Response, Fatemeh Ghari, Anne-Marie Quirke, Shonagh Munro, Joanna Kawalkowska, Sarah Picaud, Joanna Mcgouran, Venkataraman Subramanian, Aaron Muth, Richard Williams, Benedikt Kessler, Paul R. Thompson, Panagis Fillipakopoulos, Stefan Knapp, Patrick J. Venables, Nicholas B. La Thangue

Thompson Lab Publications

Peptidyl arginine deiminase 4 (PAD4) is a nuclear enzyme that converts arginine residues to citrulline. Although increasingly implicated in inflammatory disease and cancer, the mechanism of action of PAD4 and its functionally relevant pathways remains unclear. E2F transcription factors are a family of master regulators that coordinate gene expression during cellular proliferation and diverse cell fates. We show that E2F-1 is citrullinated by PAD4 in inflammatory cells. Citrullination of E2F-1 assists its chromatin association, specifically to cytokine genes in granulocyte cells. Mechanistically, citrullination augments binding of the BET (bromodomain and extra-terminal domain) family bromodomain reader BRD4 (bromodomain-containing protein 4) to ...


Peptidylarginine Deiminase 3 (Pad3) Is Upregulated By Prolactin Stimulation Of Cid-9 Cells And Expressed In The Lactating Mouse Mammary Gland, Guangyuan Li, Isaac N. Hayward, Brittany R. Jenkins, Heather M. Rothfuss, Coleman H. Young, Marja T. Nevalainen, Aaron Muth, Paul R. Thompson, Amy M. Navratil, Brian D. Cherrington Jan 2016

Peptidylarginine Deiminase 3 (Pad3) Is Upregulated By Prolactin Stimulation Of Cid-9 Cells And Expressed In The Lactating Mouse Mammary Gland, Guangyuan Li, Isaac N. Hayward, Brittany R. Jenkins, Heather M. Rothfuss, Coleman H. Young, Marja T. Nevalainen, Aaron Muth, Paul R. Thompson, Amy M. Navratil, Brian D. Cherrington

Thompson Lab Publications

Peptidylarginine deiminases (PADs) post-translationally convert arginine into neutral citrulline residues. Our past work shows that PADs are expressed in the canine and murine mammary glands; however, the mechanisms regulating PAD expression and the function of citrullination in the normal mammary gland are unclear. Therefore, the first objective herein was to investigate regulation of PAD expression in mammary epithelial cells. We first examined PAD levels in CID-9 cells, which were derived from the mammary gland of mid-pregnant mice. PAD3 expression is significantly higher than all other PAD isoforms and mediates protein citrullination in CID-9 cells. We next hypothesized that prolactin regulates ...