Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Structure-Based Design Of Inhibitors Targeting Influenza A Virus M2 Proton Channel (A/M2), Jun Wang Dec 2010

Structure-Based Design Of Inhibitors Targeting Influenza A Virus M2 Proton Channel (A/M2), Jun Wang

Publicly Accessible Penn Dissertations

Influenza A virus M2 (A/M2) forms a homotetrameric channel in viral membranes that is highly selective for protons. A/M2 has been extensively studied by electrophysiologists, biophysicists, structural biologists and biochemists in order to understand the mechanism and selectivity of proton conductance from the structural basis. Medicinal chemists have also studied A/M2 as therapeutic target for anti-flu drugs. However, research on A/M2 drug binding lead to entirely different binding sites of two very similar anti-flu drugs. In light of the urgency in developing novel antivirals against drug resistant A/M2 mutants, it is imperative to solve this ...


Combining Structure-Based Drug Design And Pharmacophores, Renate Griffith, T. T. T. Luu, James A. Garner, Paul A. Keller Aug 2010

Combining Structure-Based Drug Design And Pharmacophores, Renate Griffith, T. T. T. Luu, James A. Garner, Paul A. Keller

Paul Keller

Development towards integrated computer-aided drug design methodologies is presented by utilising crystal structure complexes to produce structure-based pharmacophores. These novel pharmacophores represent the ligand features that are involved in interactions with the target protein, as well as the space around the ligand occupied by the protein. The protein-ligand complexes can also yield information about all interactions that ligands could potentially form with the binding site, as well as about the size of the binding cavity. Together, these describe a 'superligand', which can also be viewed as a pharmacophore. Various types of novel pharmacophores are discussed and compared, using HIV-1 Reverse ...