Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Methyl Transfer By Substrate Signaling From A Knotted Protein Fold, Thomas Christian, Reiko Sakaguchi, Agata P. Perlinska, George Lahoud, Takuhiro Ito, Erika A. Taylor, Shigeyuki Yokoyama, Joanna I. Sulkowska, Ya-Ming Hou Dec 2015

Methyl Transfer By Substrate Signaling From A Knotted Protein Fold, Thomas Christian, Reiko Sakaguchi, Agata P. Perlinska, George Lahoud, Takuhiro Ito, Erika A. Taylor, Shigeyuki Yokoyama, Joanna I. Sulkowska, Ya-Ming Hou

Erika A. Taylor, Ph.D.

Proteins with knotted configurations, in comparison with unknotted proteins, are restricted in conformational space. Little is known regarding whether knotted proteins have sufficient dynamics to communicate between spatially separated substrate-binding sites. TrmD is a bacterial methyltransferase that uses a knotted protein fold to catalyze methyl transfer from S-adenosyl methionine (AdoMet) to G37-tRNA. The product, m1G37-tRNA, is essential for life and maintains protein-synthesis reading frames. Using an integrated approach of structural, kinetic, and computational analysis, we show that the structurally constrained TrmD knot is required for its catalytic activity. Unexpectedly, the TrmD knot undergoes complex internal movements that respond to AdoMet ...


Second-Sphere Amino Acids Contribute To Transition-State Structure In Bovine Purine Nucleoside Phosphorylase, Lei Li, Minkui Luo, Mahmoud Ghanem, Erika A. Taylor, Vern L. Schramm Feb 2008

Second-Sphere Amino Acids Contribute To Transition-State Structure In Bovine Purine Nucleoside Phosphorylase, Lei Li, Minkui Luo, Mahmoud Ghanem, Erika A. Taylor, Vern L. Schramm

Erika A. Taylor, Ph.D.

Transition-state structures of human and bovine of purine nucleoside phosphorylases differ, despite 87% homologous amino acid sequences. Human PNP (HsPNP) has a fully dissociated transition state, while that for bovine PNP (BtPNP) has early SN1 character. Crystal structures and sequence alignment indicate that the active sites of these enzymes are the same within crystallographic analysis, but residues in the second-sphere from the active sites differ significantly. Residues in BtPNP have been mutated toward HsPNP, resulting in double (Asn123Lys; Arg210Gln) and triple mutant PNPs (Val39Thr; Asn123Lys; Arg210Gln). Steady-state kinetic studies indicated unchanged catalytic activity, while pre-steady-state studies indicate that the chemical ...