Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Visible Light Generation Of High-Valent Corrole-Manganese(V)-Oxo Intermediates And Biomimetic Studies Of The Oxidation Of Organic Sulfides Catalyzed By Manganese Corroles With Iodobenzene Diacetate, Davis Ray Ranburger Jul 2018

Visible Light Generation Of High-Valent Corrole-Manganese(V)-Oxo Intermediates And Biomimetic Studies Of The Oxidation Of Organic Sulfides Catalyzed By Manganese Corroles With Iodobenzene Diacetate, Davis Ray Ranburger

Masters Theses & Specialist Projects

High-valent transition metal-oxo intermediates play essential roles as active oxidizing species in enzymatic and biomimetic catalytic systems. Extensive research has been conducted on a variety of transition metal catalysts being studied as models for the ubiquitous cytochrome P450 enzymes. In doing so, the production of enzyme-like oxidation catalysts and probing studies on the sophisticated oxygen atom transfer mechanism are taking place.

In this work, visible-light irradiation of highly-photo-labile corrole-manganese(IV) bromates and chlorates was studied in two corrole systems with differing electronic environments, i.e. 5,10,15-trisphenylcorrole (H3TPC) and 5,10,15- tris(pentafluorophenyl)corrole (H3TPFC). In ...


Photochemical Investigation Of High-Valent Metal-Oxo Intermediates Containing Corrole And Light-Harvesting Porphyrin Ligands, Jonathan Malone Jul 2018

Photochemical Investigation Of High-Valent Metal-Oxo Intermediates Containing Corrole And Light-Harvesting Porphyrin Ligands, Jonathan Malone

Masters Theses & Specialist Projects

In enzymatic and synthetic catalytic oxidations, high-valent iron-oxo intermediates play a vital role as the active oxidant. In this regard, many synthetic metal catalysts are designed as biomimetic models to resemble the active site of Cytochrome P450 enzymes (P450) which are the predominant oxidation catalysts in nature. Vitamin B12 cofactors, with a corrole-like structure corrin, are also utilized in some of the more difficult reactions in nature such as rearrangement and reductase reactions.

In this work, application of the promising photochemical method to corrolecontaining ligands systems showed much success in the generation of manganese(V)-oxo corrole intermediates using two ...


Binding Of Oxaliplatin And Its Analogs With Dna Nucleotides At Variable Ph And Concentration Levels, Rippa Sehgal Apr 2016

Binding Of Oxaliplatin And Its Analogs With Dna Nucleotides At Variable Ph And Concentration Levels, Rippa Sehgal

Masters Theses & Specialist Projects

Oxaliplatin is one of the three FDA-approved platinum anticancer drugs and considered a third generation drug, discovered after the first generation drug cisplatin and second generation drug carboplatin. It is known to react with proteins and DNA nucleotides in the body. Reaction with DNA occurs primarily at guanosine residues and secondarily at adenine residues for oxaliplatin and other platinum drugs. We have previously studied oxaliplatin and an analog with additional steric hindrance in the amine ligand and found that the analog had different reactivity with methionine. Now, we have prepared oxaliplatin and its three analogs Pt(Me2dach)(ox), Pt(en ...


One-Step Synthesis Of Kanamycin Functionalized Gold Nanoparticles With Potent Antibacterial Activity Against Resistant Bacterial Strains, Hitesh Kumar Waghwani May 2015

One-Step Synthesis Of Kanamycin Functionalized Gold Nanoparticles With Potent Antibacterial Activity Against Resistant Bacterial Strains, Hitesh Kumar Waghwani

Masters Theses & Specialist Projects

On the verge of entering the post-antibiotic era, numerous efforts are in place to regain the losing potential of antibiotics which are proving ineffective against common bacterial infections. Engineered nanomaterials, especially gold nanoparticles (GNPs) capped with antibacterial agents are proving to be an effective and novel strategy against multi-drug resistant (MDR) bacteria. In this study, we report a one-step synthesis of kanamycin-capped GNPs (20 ± 5 nm) utilizing the combined reducing and capping ability of the aminoglycoside antibiotic, kanamycin. Antibacterial assays showed dosedependent broad spectrum activity of Kan-GNPs against Gram-positive (Staphylococcus epidermidis and Enterococcus durans), Gram-negative (Escherichia coli and Enterobacter aerogenes ...


Selective Oxidations By Iron(Iii) Porphyrins And Iron(Iii) Corroles, Aaron Dalnamath Carver Aug 2014

Selective Oxidations By Iron(Iii) Porphyrins And Iron(Iii) Corroles, Aaron Dalnamath Carver

Masters Theses & Specialist Projects

The selective oxidation of organic compounds represents a leading technology for chemical industries. They are used in chemical synthesis in the pharmaceutical and petrochemicals industries, and possible the decontamination of harmful substances. However, oxidations reaction are among the most challenging processes to control. Many stoichiometric oxidants with heavy metals are expensive, or toxic maybe both, and therefore unfeasible to be utilized. The ideal processes for catalytic oxidation would use molecular oxygen or hydrogen peroxide as the primary oxygen source, with transition metal catalysts to mimic the predominant oxidation catalysts in Nature, the cytochrome P450 enzymes. This study focuses on the ...


Antimicrobial Nanoparticles: A Green And Novel Approach For Enhancing Bactericidal Efficacy Of Commercial Antibiotics, Monic Shah Aug 2014

Antimicrobial Nanoparticles: A Green And Novel Approach For Enhancing Bactericidal Efficacy Of Commercial Antibiotics, Monic Shah

Masters Theses & Specialist Projects

On the verge of entering the post-antibiotic era, numerous efforts are in place to regain the waning charm of antibiotics which are proving ineffective against most “Superbugs”. Engineered nanomaterials, especially gold nanoparticles (GNPs) capped with antibacterial agents, are proving to be an effective and novel strategy against multidrug resistant (MDR) bacteria. In this study, we report a one-step synthesis of antibioticcapped GNPs (25 ± 5 nm) utilizing the combined reducing and capping ability of a cephalosporin antibiotic, ceftazidime. No signs of aggregation or leaching of ceftazidime from GNP surface was observed upon its storage. Antibacterial testing showed dosedependent broad spectrum activity ...


Green Synthesis And Evaluation Of Catalytic Activity Of Sugar Capped Gold Nanoparticles, Yogesh A. Kherde Aug 2014

Green Synthesis And Evaluation Of Catalytic Activity Of Sugar Capped Gold Nanoparticles, Yogesh A. Kherde

Masters Theses & Specialist Projects

Owing to the importance of gold nanoparticles in catalysis, designing of them has become a major focus of the researchers. Most of the current methods available for the synthesis of gold nanoaprticles (GNPs) suffer from the challenges of polydispersity, stability and use of toxic and harmful chemicals. To overcome these limitations of conventional methods, in our present study, we made an attempt to design a method for the green synthesis of monodispersed and stable gold nanoparticles by sugars which act as reducing and stabilizing agent. Characterization of synthesized nanoparticles was done by using various analytical techniques such as transmission electron ...


Functionalization And Modification Of Naphthaquinone Analogs As Her2 Kinase Inhibitors, Divya Jyothi Lella May 2014

Functionalization And Modification Of Naphthaquinone Analogs As Her2 Kinase Inhibitors, Divya Jyothi Lella

Masters Theses & Specialist Projects

HER2 overexpression in breast cancer tumors predicts lower overall survival. Because of the aggressive nature of HER2 tumors and the association with metastatic disease, the HER2 receptor holds great promise as a therapeutic target in metastatic breast cancer. We are developing small molecule inhibitors that bind to the ATP binding site of the tyrosine kinase domain in order to inhibit tyrosine auto-phosphorylation. This process controls biological pathways that mediate the cell growth. In normal cells this process is highly controlled. We are targeting the modification of the side chain of the hydroxy methyl group of 2-Hydroxy methyl-5,8-dimethoxy-1,4-naphthaquinone. These ...


Green's Functions Of Discrete Fractional Calculus Boundary Value Problems And An Application Of Discrete Fractional Calculus To A Pharmacokinetic Model, Sutthirut Charoenphon May 2014

Green's Functions Of Discrete Fractional Calculus Boundary Value Problems And An Application Of Discrete Fractional Calculus To A Pharmacokinetic Model, Sutthirut Charoenphon

Masters Theses & Specialist Projects

Fractional calculus has been used as a research tool in the fields of pharmacology, biology, chemistry, and other areas [3]. The main purpose of this thesis is to calculate Green's functions of fractional difference equations, and to model problems in pharmacokinetics. We claim that the discrete fractional calculus yields the best prediction performance compared to the continuous fractional calculus in the application of a one-compartmental model of drug concentration. In Chapter 1, the Gamma function and its properties are discussed to establish a theoretical basis. Additionally, the basics of discrete fractional calculus are discussed using particular examples for further ...


Selective Oxidations By Metalloporphyrins And Metallocorroles, Tse-Hong Chen May 2014

Selective Oxidations By Metalloporphyrins And Metallocorroles, Tse-Hong Chen

Masters Theses & Specialist Projects

Highly reactive transition metal-oxo intermediates are important active oxidant involved in numerous enzymes such as cytochrome P450 monooxygenases as well as in many useful metal-catalyzed oxidations. Many transition metal catalysts are designed for biomimetic studies of the predominant oxidation catalysts in Nature, the cytochrome P450 enzymes. In this work, a series of metalloporphyrin and metallocorrole complexes have been successfully synthesized and spectroscopically characterized by UV-vis, GCMS and 1H-NMR. The utilization of these complexes as catalysts for selective oxidation of sulfides and photocatalytic aerobic oxidations of activated hydrocarbons were investigated. Ruthenium(II) porphyrin complexes (2) and iron(III) corrole complexes ...


Molecular Level Interaction Of Human Fibroblast Growth Factor-1 (Hfgf-1) With Phloridzin, Rammohan Paripelly Dec 2013

Molecular Level Interaction Of Human Fibroblast Growth Factor-1 (Hfgf-1) With Phloridzin, Rammohan Paripelly

Masters Theses & Specialist Projects

Fibroblast growth factors (FGFs) are a family of growth factors which includes twenty three proteins. FGFs work as modulators for various cellular activities like mitosis, differentiation and survival. Among the FGF family, human fibroblast growth factor-1 (hFGF-1), which is also known as acidic fibroblast growth factor, is a potent angiogenic agent, involved in the formation of new blood vessels in various tissues. hFGF-1 is regarded as a prototype of the FGF family. It serves as one of the potential targets in tumor inhibition and obesity due to its involvement in new blood vessel formation in cancerous regions and adipose tissues ...


Ionic Conductivity In Non-Ionic Compounds, Usha Kranthi Avala Aug 2013

Ionic Conductivity In Non-Ionic Compounds, Usha Kranthi Avala

Masters Theses & Specialist Projects

The main objective of this work is to investigate the ionic conductivity of the drugs under certain conditions and also to compare the ionic conductivities of drugs determined by single surface sensors and parallel plate sensors. The ionic conductivity of various materials at their pre-melt and melt states are studied in order to further study a recently discovered phenomenon. Polar solids like Lidocaine, Ketoconazole, Procainamide and Nifedipine were examined in this study. Experimental studies show an increase in ionic conductivity in both pre-melt (20 -30 °C below melting temperature) and melt transition regions. Results of ionic conductivity of both parallel ...


Selective Catalytic Oxidation Of Organic Sulfides By Iron (Iii) Porphryin Catalysts And Generation Of Iron (Iv)-Oxo Prophyrin Radical Cations, Nawras A. Asiri Aug 2013

Selective Catalytic Oxidation Of Organic Sulfides By Iron (Iii) Porphryin Catalysts And Generation Of Iron (Iv)-Oxo Prophyrin Radical Cations, Nawras A. Asiri

Masters Theses & Specialist Projects

Macrocyclic ligand-complexed transition metal-oxo intermediates are the active oxidizing species in a variety of important biological and catalytic oxidation reactions. Many transition metal catalysts have been designed to mimic the predominant oxidation catalysts in nature, namely the cytochrome P450 enzymes. Iron porphyrin complexes have been the center of research as catalysts. In this study 5,10,15,20- tetramesitylporphyrin (H2TMP) and its corresponding iron complexes FeIII(X)TMP (X= Cl, ClO4, ClO3, NO3, NO2, and BrO3) have been successfully synthesized and fully characterized by UV-vis and NMR spectroscopies. For the catalytic selective ...


Synthesis Of Rhenium And Manganese Pyridazoal Complexes, Jesse Evans May 2013

Synthesis Of Rhenium And Manganese Pyridazoal Complexes, Jesse Evans

Masters Theses & Specialist Projects

Pyridazines are a heterocyclic aromatic compound containing a characteristic N-N bond that are utilized in many fields, including medicine and electronics. It is this latter field that Dr. Snyder's research group is focused upon. Organometallic compounds are a better conducting material than the current inorganic compounds used in electronics due to better conductance of electricity, lower production cost, and the ability to be formed into thin films. With this in mind, Dr. Snyder's research group has set out to synthesize organometallic compounds for this purpose. Following procedures set forth by Snyder etc, and altered to form an off-metal ...


Reactions Of Platinum(Ii) Compounds With Selenium Containing Amino Acids, Stephanie Robey May 2013

Reactions Of Platinum(Ii) Compounds With Selenium Containing Amino Acids, Stephanie Robey

Masters Theses & Specialist Projects

Platinum(II) anticancer medications essentially react with DNA forming kinks in
the double helix of DNA and causing apoptosis. It has also been noted that these
anticancer medications react with methionine and cysteine in the body. With the new discoveries of selenium containing amino acids including selenomethionine and selenocysteine, new research is ongoing to see what types of products can be formed from these amino acids. Our research reacts [Pt(Met-S,N)Cl2] 2+ with selenomethionine to determine what types of products are produced. Monochelates including [Pt(SeMet-Se,N)Cl2] 2+ have formed two isomers, as ...


Effects Of Cisplatin Analog Size On The Reaction With Dna Bases, Swathi Nandala May 2013

Effects Of Cisplatin Analog Size On The Reaction With Dna Bases, Swathi Nandala

Masters Theses & Specialist Projects

Cancer is the second leading cause of death in the United States. Cisplatin is one of the well-known anti-cancer agents used to treat testicular and ovarian cancers. It mainly binds to the DNA bases, which leads to cell death. The cytotoxic activity of the cisplatin analogs is due to the interaction of platinum with nucleotides like adenine at N7 or N1 position and guanine at N7 position. Guanine is the primary target for cisplatin analogs whereas adenine is the secondary target. Cisplatin analogs, [Pt(Me5dien)(D2O)]2+[Me5dien = N,N,N ...


Size Dependent Antimicrobial Properties Of Sugar Encapsulated Gold Nanoparticles, Lakshmisri Manisha Vangala May 2012

Size Dependent Antimicrobial Properties Of Sugar Encapsulated Gold Nanoparticles, Lakshmisri Manisha Vangala

Masters Theses & Specialist Projects

The antimicrobial properties of dextrose encapsulated gold nanoparticles (dGNPs) with average diameters of 25 nm, 60 nm, and 120 nm (± 5 nm) synthesized by green chemistry principles were investigated against both Gram-negative and Gram-positive bacteria. Studies were performed involving the effect of the dGNPs on the growth, morphology and the ultrastructural properties of bacteria. dGNPs were found to have significant dose dependent antibacterial activity which was directly proportional to their size and also their concentration. The microbial assays revealed the dGNPs to be bacteriostatic as well as bactericidal. The dGNPs exhibited their bactericidal action through the disruption of the bacterial ...


Activity Of Analogs Of Anticancer Drugs On The Serine Protease Enzymes Subtilisin And Chymotrypsin, Dhatri Ravipati Dec 2011

Activity Of Analogs Of Anticancer Drugs On The Serine Protease Enzymes Subtilisin And Chymotrypsin, Dhatri Ravipati

Masters Theses & Specialist Projects

The anticancer activity of several platinum compounds is due to the formation of complexes with DNA. We hypothesize that the size and shape of the platinum compounds would impact interaction with proteins, and these interactions may be partly responsible for the anticancer activity. Chymotrypsin and subtilisin are serine proteases that have a histidine residue in the active site. We are investigating the inhibition of the digestive enzymes chymotrypsin and subtilisin by analogs of the anticancer drug cisplatin and trying to discern trends in the inhibition as the active site residues vary. In our research, we found that the enzyme subtilisin ...


Inhibition Of Cysteine Protease By Platinum (Ii) Diamine Complexes, Chaitanya Rapolu Dec 2011

Inhibition Of Cysteine Protease By Platinum (Ii) Diamine Complexes, Chaitanya Rapolu

Masters Theses & Specialist Projects

Chemotherapy is the first line of treatment used in cancer. Chemotherapy drugs such as cisplatin, carboplatin and oxaliplatin are used in treatment. Cisplatin enters the cell through copper transporter CTR1 by passive diffusion and bind to DNA and proteins. Cisplatin is found to inhibit several enzymes targeting cysteine, histidine and methionine residues, which are expected to be responsible for its anticancer activity. A better understanding of how the size and shape and leaving ligands of platinum complexes affect cysteine protease, papain enzyme are studied. This could give new ways to optimize anticancer activity. The activity of papain enzyme was measured ...


The Reaction Of A Water Soluble Platinum Compound With Methionine And Derivatives, Yueh Ying Liao Apr 2010

The Reaction Of A Water Soluble Platinum Compound With Methionine And Derivatives, Yueh Ying Liao

Masters Theses & Specialist Projects

Water soluble platinum complexes are a recent area of emphasis of cisplatin chemistry. The water soluble complexes could have a reduced toxicity compared with cisplatin. Oxaliplatin, which has an oxalate leaving group, has previously been shown to have less nephro-toxicity and higher water solubility than cisplatin. [Pt(en)(oxalate)] (en = ethylenediamine) has been prepared from Pt(en)Cl2 and silver oxalate. This complex has been reacted with methionine and N-acetylmethionine at different molar ratios. At high Pt: methionine ratios, chelates with the sulfur and nitrogen atoms of the methionine are dominant; at lower Pt: methionine ratios, a bis-methionine product is ...


A Study On The Protein Interaction With Different Platinum Compounds, Nayna Kotadia Jul 2008

A Study On The Protein Interaction With Different Platinum Compounds, Nayna Kotadia

Masters Theses & Specialist Projects

Since the discovery of anti-tumor activity of cisplatin in 1960, significant progress has been made in treating metastatic or advanced cancer with cisplatin and platinum compounds. Platinum compounds covalently bind to DNA and disrupt DNA function. They are also known to bind with amino acids like methionine, histidine and cysteine to form cisplatin-protein adducts which are responsible for most of its cytotoxicity and side effects. Recent articles on cisplatin-protein have shown that adding bulky adjuncts to cisplatin or using different platinum compounds varies the degree and extent of reaction thus possibly reducing cisplatin resistance and side effects.

One of the ...