Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Ferrocenylchalcone-Uracil Conjugates: Synthesis And Cytotoxic Evaluation, Amandeep Singh, Vishu Mehra, Neda Sadeghiani, Saghar Mozaffari, Keykavous Parang, Vipan Kumar Feb 2018

Ferrocenylchalcone-Uracil Conjugates: Synthesis And Cytotoxic Evaluation, Amandeep Singh, Vishu Mehra, Neda Sadeghiani, Saghar Mozaffari, Keykavous Parang, Vipan Kumar

Pharmacy Faculty Articles and Research

Huisgen’s azide-alkyne cycloaddition reaction was employed to synthesize a series of 1H-1,2,3-triazole-tethered uracil-ferrocenyl chalcone conjugates with the aim of evaluating their in vitro anti-proliferative efficacy on human leukemia (CCRF-CEM) and human breast adenocarcinoma (MDA-MB-468) cell lines. Cytotoxic evaluation studies identified a number of synthesized conjugates that inhibited the proliferation of leukemia cancer cells by ~70% after 72 h. The selected synthesized conjugates were found to be significantly less cytotoxic against normal kidney cell line (LLC-PK1) when compared with CCRF-CEM cancer cells.


Peroxiredoxin Catalysis At Atomic Resolution, Arden Perkins, Derek Parsonage, Kimberly J. Nelson, O. Maduka Ogba, Paul Ha-Yeon Cheong, Leslie B. Poole, P. Andrew Karplus Sep 2016

Peroxiredoxin Catalysis At Atomic Resolution, Arden Perkins, Derek Parsonage, Kimberly J. Nelson, O. Maduka Ogba, Paul Ha-Yeon Cheong, Leslie B. Poole, P. Andrew Karplus

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidases that guard cells against oxidative damage, are virulence factors for pathogens, and are involved in eukaryotic redox regulatory pathways. We have analyzed catalytically active crystals to capture atomic resolution snapshots of a PrxQ-subfamily enzyme (from Xanthomonas campestris) proceeding through thiolate, sulfenate, and sulfinate species. These analyses provide structures of unprecedented accuracy for seeding theoretical studies, and show novel conformational intermediates giving insight into the reaction pathway. Based on a highly non-standard geometry seen for the sulfenate intermediate, we infer that the sulfenate formation itself can strongly promote local unfolding of the active site to ...


Protein Adducts Of Iso[4]Levuglandin E2, A Product Of The Isoprostane Pathway, In Oxidized Low Density Lipoprotein, Robert G. Salomon, Wei Sha, Cynthia Brame, Kamaljit Kaur, Ganesamoorthy Subbanagounder, June O'Neil, Henry F. Hoff, L. Jackson Roberts Ii Jul 1999

Protein Adducts Of Iso[4]Levuglandin E2, A Product Of The Isoprostane Pathway, In Oxidized Low Density Lipoprotein, Robert G. Salomon, Wei Sha, Cynthia Brame, Kamaljit Kaur, Ganesamoorthy Subbanagounder, June O'Neil, Henry F. Hoff, L. Jackson Roberts Ii

Pharmacy Faculty Articles and Research

Levuglandin (LG) E2, a cytotoxic seco prostanoic acid co-generated with prostaglandins by nonenzymatic rearrangements of the cyclooxygenase-derived endoperoxide, prostaglandin H2, avidly binds to proteins. That LGE2-protein adducts can also be generated nonenzymatically is demonstrated by their production during free radical-induced oxidation of low density lipoprotein (LDL). Like oxidized LDL, LGE2-LDL, but not native LDL, undergoes receptor-mediated uptake and impaired processing by macrophage cells. Since radical-induced lipid oxidation produces isomers of prostaglandins, isoprostanes (isoPs), via endoperoxide intermediates, we postulated previously that a similar family of LG isomers, isoLGs, is cogenerated with isoPs. Now iso[4 ...