Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 45

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Mechanism For Apobec3g Catalytic Exclusion Of Rna And Non-Substrate Dna, William C. Solomon, Wazo Myint, Shurong Hou, Tapan Kanai, Rashmi Tripathi, Nese Kurt Yilmaz, Celia A. Schiffer, Hiroshi Matsuo Aug 2019

Mechanism For Apobec3g Catalytic Exclusion Of Rna And Non-Substrate Dna, William C. Solomon, Wazo Myint, Shurong Hou, Tapan Kanai, Rashmi Tripathi, Nese Kurt Yilmaz, Celia A. Schiffer, Hiroshi Matsuo

Schiffer Lab Publications

The potent antiretroviral protein APOBEC3G (A3G) specifically targets and deaminates deoxycytidine nucleotides, generating deoxyuridine, in single stranded DNA (ssDNA) intermediates produced during HIV replication. A non-catalytic domain in A3G binds strongly to RNA, an interaction crucial for recruitment of A3G to the virion; yet, A3G displays no deamination activity for cytidines in viral RNA. Here, we report NMR and molecular dynamics (MD) simulation analysis for interactions between A3Gctd and multiple substrate or non-substrate DNA and RNA, in combination with deamination assays. NMR ssDNA-binding experiments revealed that the interaction with residues in helix1 and loop1 (T201-L220) distinguishes the binding mode of ...


Molecular And Structural Mechanism Of Pan-Genotypic Hcv Ns3/4a Protease Inhibition By Glecaprevir, Jennifer Timm, Klajdi Kosovrasti, Mina Henes, Florian Leidner, Shurong Hou, Akbar Ali, Nese Kurt Yilmaz, Celia A. Schiffer Jul 2019

Molecular And Structural Mechanism Of Pan-Genotypic Hcv Ns3/4a Protease Inhibition By Glecaprevir, Jennifer Timm, Klajdi Kosovrasti, Mina Henes, Florian Leidner, Shurong Hou, Akbar Ali, Nese Kurt Yilmaz, Celia A. Schiffer

University of Massachusetts Medical School Faculty Publications

Hepatitis C virus (HCV), causative agent of chronic viral hepatitis, infects 71 million people worldwide and is divided into seven genotypes and multiple subtypes with sequence identities between 68 to 82%. While older generation direct-acting antivirals (DAAs) had varying effectiveness against different genotypes, the newest NS3/4A protease inhibitors including glecaprevir (GLE) have pan-genotypic activity. The structural basis for pan-genotypic inhibition and effects of polymorphisms on inhibitor potency were not well known due to lack of crystal structures of GLE-bound NS3/4A or genotypes other than 1. In this study, we determined the crystal structures of NS3/4A from genotypes ...


Histone Citrullination Represses Mirna Expression Resulting In Increased Oncogene Mrnas In Somatolactotrope Cells., Stanley B Devore, Coleman H. Young, Guangyuan Li, Anitha Sundararajan, Thiruvarangan Ramaraj, Joann Mudge, Faye Schilkey, Aaron Muth, Paul R. Thompson, Brian D. Cherrington Sep 2018

Histone Citrullination Represses Mirna Expression Resulting In Increased Oncogene Mrnas In Somatolactotrope Cells., Stanley B Devore, Coleman H. Young, Guangyuan Li, Anitha Sundararajan, Thiruvarangan Ramaraj, Joann Mudge, Faye Schilkey, Aaron Muth, Paul R. Thompson, Brian D. Cherrington

University of Massachusetts Medical School Publications

Peptidylarginine deiminase (PAD) enzymes convert histone arginine residues into citrulline to modulate chromatin organization and gene expression. Although PADs are expressed in anterior pituitary gland cells, their functional role and expression in pituitary adenomas is unknown. To begin to address these questions, we first examined normal human pituitaries and pituitary adenomas and found that PAD2, PAD4 and citrullinated histones are highest in prolactinomas and somatoprolactinomas. In the somatoprolactinoma-derived GH3 cell line, PADs citrullinate histone H3, which is attenuated by a pan-PAD inhibitor. RNA-sequencing and ChIP studies show that the expression of microRNAs let-7c-2, miR-23b and miR-29c is suppressed by histone ...


T Cell Epitope Engineering: An Avian H7n9 Influenza Vaccine Strategy For Pandemic Preparedness And Response, Leonard Moise, Bethany M. Biron, Christine M. Boyle, Nese Kurt Yilmaz, Hyesun Jang, Celia A. Schiffer, Ted M. Ross, William D. Martin, Anne S. De Groot Sep 2018

T Cell Epitope Engineering: An Avian H7n9 Influenza Vaccine Strategy For Pandemic Preparedness And Response, Leonard Moise, Bethany M. Biron, Christine M. Boyle, Nese Kurt Yilmaz, Hyesun Jang, Celia A. Schiffer, Ted M. Ross, William D. Martin, Anne S. De Groot

Schiffer Lab Publications

The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4(+) T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory ...


Assembly Of Human C-Terminal Binding Protein (Ctbp) Into Tetramers, Andrew G. Bellesis, Anne M. Jecrois, Janelle A. Hayes, Celia A. Schiffer, William E. Royer Jun 2018

Assembly Of Human C-Terminal Binding Protein (Ctbp) Into Tetramers, Andrew G. Bellesis, Anne M. Jecrois, Janelle A. Hayes, Celia A. Schiffer, William E. Royer

Schiffer Lab Publications

C-terminal binding protein 1 (CtBP1) and CtBP2 are transcriptional coregulators that repress numerous cellular processes, such as apoptosis, by binding transcription factors and recruiting chromatin-remodeling enzymes to gene promoters. The NAD(H)-linked oligomerization of human CtBP is coupled to its co-transcriptional activity, which is implicated in cancer progression. However, the biologically relevant level of CtBP assembly has not been firmly established; nor has the stereochemical arrangement of the subunits above that of a dimer. Here, multi-angle light scattering (MALS) data established the NAD(+)- and NADH-dependent assembly of CtBP1 and CtBP2 into tetramers. An examination of subunit interactions within CtBP1 ...


Comparison Of Partially And Fully Chemically-Modified Sirna In Conjugate-Mediated Delivery In Vivo, Matthew R. Hassler, Anton A. Turanov, Julia F. Alterman, Reka A. Haraszti, Andrew H. Coles, Maire F. Osborn, Dimas Echeverria, Mehran Nikan, William E. Salomon, Loic Roux, Bruno M. D. C. Godinho, Sarah M. Davis, David V. Morrissey, Phillip D. Zamore, S. Ananth Karumanchi, Melissa J. Moore, Neil Aronin, Anastasia Khvorova Feb 2018

Comparison Of Partially And Fully Chemically-Modified Sirna In Conjugate-Mediated Delivery In Vivo, Matthew R. Hassler, Anton A. Turanov, Julia F. Alterman, Reka A. Haraszti, Andrew H. Coles, Maire F. Osborn, Dimas Echeverria, Mehran Nikan, William E. Salomon, Loic Roux, Bruno M. D. C. Godinho, Sarah M. Davis, David V. Morrissey, Phillip D. Zamore, S. Ananth Karumanchi, Melissa J. Moore, Neil Aronin, Anastasia Khvorova

Open Access Articles

Small interfering RNA (siRNA)-based drugs require chemical modifications or formulation to promote stability, minimize innate immunity, and enable delivery to target tissues. Partially modified siRNAs (up to 70% of the nucleotides) provide significant stabilization in vitro and are commercially available; thus are commonly used to evaluate efficacy of bio-conjugates for in vivo delivery. In contrast, most clinically-advanced non-formulated compounds, using conjugation as a delivery strategy, are fully chemically modified (100% of nucleotides). Here, we compare partially and fully chemically modified siRNAs in conjugate mediated delivery. We show that fully modified siRNAs are retained at 100x greater levels in various ...


Structural Determination Of The Broadly Reactive Anti-Ighv1-69 Anti-Idiotypic Antibody G6 And Its Idiotope, Yuval Avnir, Kristina L. Prachanronarong, Shurong Hou, Brendan J. Hilbert, Markus-Frederik Bohn, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang, Nese Kurt Yilmaz, Celia A. Schiffer, Wayne A. Marasco Dec 2017

Structural Determination Of The Broadly Reactive Anti-Ighv1-69 Anti-Idiotypic Antibody G6 And Its Idiotope, Yuval Avnir, Kristina L. Prachanronarong, Shurong Hou, Brendan J. Hilbert, Markus-Frederik Bohn, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang, Nese Kurt Yilmaz, Celia A. Schiffer, Wayne A. Marasco

Schiffer Lab Publications

The heavy chain IGHV1-69 germline gene exhibits a high level of polymorphism and shows biased use in protective antibody (Ab) responses to infections and vaccines. It is also highly expressed in several B cell malignancies and autoimmune diseases. G6 is an anti-idiotypic monoclonal Ab that selectively binds to IGHV1-69 heavy chain germline gene 51p1 alleles that have been implicated in these Ab responses and disease processes. Here, we determine the co-crystal structure of humanized G6 (hG6.3) in complex with anti-influenza hemagglutinin stem-directed broadly neutralizing Ab D80. The core of the hG6.3 idiotope is a continuous string of CDR-H2 ...


Rational Drug Design Directed At Blocking The Initial Signaling Events In Lipopolysaccharide-Induced Sepsis., Christopher A. Tipton Jul 2017

Rational Drug Design Directed At Blocking The Initial Signaling Events In Lipopolysaccharide-Induced Sepsis., Christopher A. Tipton

Theses

Systemic Inflammatory Response Syndrome (SIRS) is classified as an immune system response to an infectious state. If left untreated, SIRS leads to sepsis, septic shock, end-organ dysfunction, and death. As a patient progresses through these stages, associations of acute respiratory distress, disseminated intravascular coagulation, and acute renal failure persist, resulting in millions of deaths annually. Lipopolysaccharide (LPS), a bacterial endotoxin, is released into the blood stream, triggering SIRS. LPS is found in the outer cell-wall of Gram-negative bacteria and is responsible for initiation of a devastating cytokine storm. One of the regions of LPS, lipid A, is a polyacylated glucosamine ...


Ligands Of Therapeutic Utility For The Liver X Receptors., Rajesh Komati, Dominick Spadoni, Shilong Zheng, Jayalakshmi Sridhar Jan 2017

Ligands Of Therapeutic Utility For The Liver X Receptors., Rajesh Komati, Dominick Spadoni, Shilong Zheng, Jayalakshmi Sridhar

Faculty and Staff Publications

Liver X receptors (LXRs) have been increasingly recognized as a potential therapeutic target to treat pathological conditions ranging from vascular and metabolic diseases, neurological degeneration, to cancers that are driven by lipid metabolism. Amidst intensifying efforts to discover ligands that act through LXRs to achieve the sought-after pharmacological outcomes, several lead compounds are already being tested in clinical trials for a variety of disease interventions. While more potent and selective LXR ligands continue to emerge from screening of small molecule libraries, rational design, and empirical medicinal chemistry approaches, challenges remain in minimizing undesirable effects of LXR activation on lipid metabolism ...


Discovery And Characterization Of A Potent And Selective Inhibitory Of Aedes Aegypti Inward Rectifier Potassium Channels, Matthew F. Rouhier, Rene Raphemot, Daniel R. Swale, Emily Days, C. David Weaver, Kimberly M. Lovell, Leah C. Konkel, Darren W. Engers, Sean F. Bollinger, Corey Hopkins, Peter M. Piermarini, Jerod S. Denton Oct 2016

Discovery And Characterization Of A Potent And Selective Inhibitory Of Aedes Aegypti Inward Rectifier Potassium Channels, Matthew F. Rouhier, Rene Raphemot, Daniel R. Swale, Emily Days, C. David Weaver, Kimberly M. Lovell, Leah C. Konkel, Darren W. Engers, Sean F. Bollinger, Corey Hopkins, Peter M. Piermarini, Jerod S. Denton

Matthew F Rouhier

Vector-borne diseases such as dengue fever and malaria, which are transmitted by infected female mosquitoes, affect nearly half of the world's population. The emergence of insecticide-resistant mosquito populations is reducing the effectiveness of conventional insecticides and threatening current vector control strategies, which has created an urgent need to identify new molecular targets against which novel classes of insecticides can be developed. We previously demonstrated that small molecule inhibitors of mammalian Kir channels represent promising chemicals for new mosquitocide development. In this study, high-throughput screening of approximately 30,000 chemically diverse small-molecules was employed to discover potent and selective inhibitors ...


Conformational Dynamics And Stability Associated With Magnesium Or Calcium Binding To Dream In The Regulation Of Interactions Between Dream And Dna Or Presenilins, Khoa Ngoc Pham Jun 2016

Conformational Dynamics And Stability Associated With Magnesium Or Calcium Binding To Dream In The Regulation Of Interactions Between Dream And Dna Or Presenilins, Khoa Ngoc Pham

FIU Electronic Theses and Dissertations

Downstream regulatory element antagonist modulator (DREAM) is involved in various interactions with targets both inside and outside of the nucleus. In the cytoplasm, DREAM interacts with the C-terminal fragments of presenilins to facilitate the production of β-amyloid plaques in Alzheimer’s disease. In the nucleus, Ca2+ free DREAM directly binds to specific downstream regulatory elements of prodynorphin/c-fos gene to repress the gene transcription in pain modulation. These interactions are regulated by Ca2+ and/or Mg2+ association at the EF-hands in DREAM. Therefore, understanding the conformational dynamics and stability associated with Ca2+ and/or Mg ...


Analysis Of New Hiv-1 Inhibitors As Potential Antiviral Agents For Hiv-2, Rowan Brothers Apr 2016

Analysis Of New Hiv-1 Inhibitors As Potential Antiviral Agents For Hiv-2, Rowan Brothers

Georgia State Undergraduate Research Conference

No abstract provided.


The Ssdna Mutator Apobec3a Is Regulated By Cooperative Dimerization, Markus-Frederik Bohn, Shivender Shandilya, Tania Silvas, Ellen Nalivaika, Takahide Kouno, Brian Kelch, Sean Ryder, Nese Yilmaz, Mohan Somasundaran, Celia Schiffer Jan 2016

The Ssdna Mutator Apobec3a Is Regulated By Cooperative Dimerization, Markus-Frederik Bohn, Shivender Shandilya, Tania Silvas, Ellen Nalivaika, Takahide Kouno, Brian Kelch, Sean Ryder, Nese Yilmaz, Mohan Somasundaran, Celia Schiffer

Celia A. Schiffer

Deaminase activity mediated by the human APOBEC3 family of proteins contributes to genomic instability and cancer. APOBEC3A is by far the most active in this family and can cause rapid cell death when overexpressed, but in general how the activity of APOBEC3s is regulated on a molecular level is unclear. In this study, the biochemical and structural basis of APOBEC3A substrate binding and specificity is elucidated. We find that specific binding of single-stranded DNA is regulated by the cooperative dimerization of APOBEC3A. The crystal structure elucidates this homodimer as a symmetric domain swap of the N-terminal residues. This dimer interface ...


Structure Of The Vif-Binding Domain Of The Antiviral Enzyme Apobec3g, Takahide Kouno, Elizabeth Luengas, Megumi Shigematsu, Shivender Shandilya, Jingying Zhang, Luan Chen, Mayuko Hara, Celia Schiffer, Reuben Harris, Hiroshi Matsuo Jan 2016

Structure Of The Vif-Binding Domain Of The Antiviral Enzyme Apobec3g, Takahide Kouno, Elizabeth Luengas, Megumi Shigematsu, Shivender Shandilya, Jingying Zhang, Luan Chen, Mayuko Hara, Celia Schiffer, Reuben Harris, Hiroshi Matsuo

Celia A. Schiffer

The human APOBEC3G (A3G) DNA cytosine deaminase restricts and hypermutates DNA-based parasites including HIV-1. The viral infectivity factor (Vif) prevents restriction by triggering A3G degradation. Although the structure of the A3G catalytic domain is known, the structure of the N-terminal Vif-binding domain has proven more elusive. Here, we used evolution- and structure-guided mutagenesis to solubilize the Vif-binding domain of A3G, thus permitting structural determination by NMR spectroscopy. A smaller zinc-coordinating pocket and altered helical packing distinguish the structure from previous catalytic-domain structures and help to explain the reported inactivity of this domain. This soluble A3G N-terminal domain is bound by ...


Simultaneously Targeting The Ns3 Protease And Helicase Activities For More Effective Hepatitis C Virus Therapy, Jean Ndjomou, M Corby, Noreena Sweeney, Alicia Hanson, Cihan Aydin, Akbar Ali, Celia Schiffer, Kelin Li, Kevin Frankowski, Frank Schoenen, David Frick Jan 2016

Simultaneously Targeting The Ns3 Protease And Helicase Activities For More Effective Hepatitis C Virus Therapy, Jean Ndjomou, M Corby, Noreena Sweeney, Alicia Hanson, Cihan Aydin, Akbar Ali, Celia Schiffer, Kelin Li, Kevin Frankowski, Frank Schoenen, David Frick

Celia A. Schiffer

This study examines the specificity and mechanism of action of a recently reported hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase-protease inhibitor (HPI), and the interaction of HPI with the NS3 protease inhibitors telaprevir, boceprevir, danoprevir, and grazoprevir. HPI most effectively reduced cellular levels of subgenomic genotype 4a replicons, followed by genotypes 3a and 1b replicons. HPI had no effect on HCV genotype 2a or dengue virus replicon levels. Resistance evolved more slowly to HPI than telaprevir, and HPI inhibited telaprevir-resistant replicons. Molecular modeling and analysis of the ability of HPI to inhibit peptide hydrolysis catalyzed by a variety ...


Structural Basis For Mutation-Induced Destabilization Of Profilin 1 In Als, Sivakumar Boopathy, Tania Silvas, Maeve Tischbein, Silvia Jansen, Shivender Shandilya, Jill Zitzewitz, John Landers, Bruce Goode, Celia Schiffer, Daryl Bosco Jan 2016

Structural Basis For Mutation-Induced Destabilization Of Profilin 1 In Als, Sivakumar Boopathy, Tania Silvas, Maeve Tischbein, Silvia Jansen, Shivender Shandilya, Jill Zitzewitz, John Landers, Bruce Goode, Celia Schiffer, Daryl Bosco

Celia A. Schiffer

Mutations in profilin 1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS); however, the pathological mechanism of PFN1 in this fatal disease is unknown. We demonstrate that ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported loss-of-function phenotypes in cell-based assays. The source of this destabilization is illuminated by the X-ray crystal structures of several PFN1 proteins, revealing an expanded cavity near the protein core of the ...


Inhibition Of Apobec3g Activity Impedes Double-Stranded Dna Repair, Ponnandy Prabhu, Shivender Shandilya, Elena Britan-Rosich, Adi Nagler, Celia Schiffer, Moshe Kotler Jan 2016

Inhibition Of Apobec3g Activity Impedes Double-Stranded Dna Repair, Ponnandy Prabhu, Shivender Shandilya, Elena Britan-Rosich, Adi Nagler, Celia Schiffer, Moshe Kotler

Celia A. Schiffer

The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ...


Rediii: A Pipeline For Automated Structure Solution, Markus-Frederik Bohn, Celia Schiffer Jan 2016

Rediii: A Pipeline For Automated Structure Solution, Markus-Frederik Bohn, Celia Schiffer

Celia A. Schiffer

High-throughput crystallographic approaches require integrated software solutions to minimize the need for manual effort. REdiii is a system that allows fully automated crystallographic structure solution by integrating existing crystallographic software into an adaptive and partly autonomous workflow engine. The program can be initiated after collecting the first frame of diffraction data and is able to perform processing, molecular-replacement phasing, chain tracing, ligand fitting and refinement without further user intervention. Preset values for each software component allow efficient progress with high-quality data and known parameters. The adaptive workflow engine can determine whether some parameters require modifications and choose alternative software strategies ...


Modulation Of Hiv Protease Flexibility By The T80n Mutation, Hao Zhou, Shangyang Li, John Badger, Ellen Nalivaika, Yufeng Cai, Jennifer Foulkes-Murzycki, Celia Schiffer, Lee Makowski Jan 2016

Modulation Of Hiv Protease Flexibility By The T80n Mutation, Hao Zhou, Shangyang Li, John Badger, Ellen Nalivaika, Yufeng Cai, Jennifer Foulkes-Murzycki, Celia Schiffer, Lee Makowski

Celia A. Schiffer

The flexibility of HIV protease (HIVp) plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80, which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the ...


A Direct Interaction With Rna Dramatically Enhances The Catalytic Activity Of The Hiv-1 Protease In Vitro, Marc Potempa, Ellen Nalivaika, Debra Ragland, Sook-Kyung Lee, Celia Schiffer, Ronald Swanstrom Jan 2016

A Direct Interaction With Rna Dramatically Enhances The Catalytic Activity Of The Hiv-1 Protease In Vitro, Marc Potempa, Ellen Nalivaika, Debra Ragland, Sook-Kyung Lee, Celia Schiffer, Ronald Swanstrom

Celia A. Schiffer

Though the steps of human immunodeficiency virus type 1 (HIV-1) virion maturation are well documented, the mechanisms regulating the proteolysis of the Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) remain obscure. One proposed mechanism argues that the maturation intermediate p15NC must interact with RNA for efficient cleavage by the PR. We investigated this phenomenon and found that processing of multiple substrates by the HIV-1 PR was enhanced in the presence of RNA. The acceleration of proteolysis occurred independently from the substrate's ability to interact with nucleic acid, indicating that a direct interaction between substrate and RNA is ...


A Balance Between Inhibitor Binding And Substrate Processing Confers Influenza Drug Resistance, Li Jiang, Ping Liu, Claudia Bank, Nicholas Renzette, Kristina Prachanronarong, L. Yilmaz, Daniel Caffrey, Konstantin Zeldovich, Celia Schiffer, Timothy Kowalik, Jeffrey Jensen, Robert Finberg, Jennifer Wang, Daniel Bolon Jan 2016

A Balance Between Inhibitor Binding And Substrate Processing Confers Influenza Drug Resistance, Li Jiang, Ping Liu, Claudia Bank, Nicholas Renzette, Kristina Prachanronarong, L. Yilmaz, Daniel Caffrey, Konstantin Zeldovich, Celia Schiffer, Timothy Kowalik, Jeffrey Jensen, Robert Finberg, Jennifer Wang, Daniel Bolon

Celia A. Schiffer

The therapeutic benefits of the neuraminidase (NA) inhibitor oseltamivir are dampened by the emergence of drug resistance mutations in influenza A virus (IAV). To investigate the mechanistic features that underlie resistance, we developed an approach to quantify the effects of all possible single-nucleotide substitutions introduced into important regions of NA. We determined the experimental fitness effects of 450 nucleotide mutations encoding positions both surrounding the active site and at more distant sites in an N1 strain of IAV in the presence and absence of oseltamivir. NA mutations previously known to confer oseltamivir resistance in N1 strains, including H275Y and N295S ...


Structural And Thermodynamic Effects Of Macrocyclization In Hcv Ns3/4a Inhibitor Mk-5172, Djade Soumana, Nese Yilmaz, Kristina Prachanronarong, Cihan Aydin, Akbar Ali, Celia Schiffer Jan 2016

Structural And Thermodynamic Effects Of Macrocyclization In Hcv Ns3/4a Inhibitor Mk-5172, Djade Soumana, Nese Yilmaz, Kristina Prachanronarong, Cihan Aydin, Akbar Ali, Celia Schiffer

Celia A. Schiffer

Recent advances in direct-acting antivirals against Hepatitis C Virus (HCV) have led to the development of potent inhibitors, including MK-5172, that target the viral NS3/4A protease with relatively low susceptibility to resistance. MK-5172 has a P2-P4 macrocycle and a unique binding mode among current protease inhibitors where the P2 quinoxaline packs against the catalytic residues H57 and D81. However, the effect of macrocyclization on this binding mode is not clear, as is the relation between macrocyclization, thermodynamic stabilization, and susceptibility to the resistance mutation A156T. We have determined high-resolution crystal structures of linear and P1-P3 macrocyclic analogs of MK-5172 ...


Anti-Tb And Antibacterial Activities Of Natural Products Extracts, Douglas Armstrong, Nathan Krause, Drew Frey Oct 2015

Anti-Tb And Antibacterial Activities Of Natural Products Extracts, Douglas Armstrong, Nathan Krause, Drew Frey

Faculty Scholarship – Chemistry

Samples of numerous plant species were received from the southwestern part of the USA from Richard Spjut, and plant samples were collected here in Illinois. All were extracted with typical solvents, giving crude residues, some of which were subjected to counter-current or flash chromatographic methods. Some of the crude extracts and chromatographic fractions had anti-tuberculosis and/or antibacterial activity.

In a general way, bioactive natural products are dealt with very well by Liang & Fang, 2006. More specifically, the southwestern part of the United States has a large variety of indigenous plants, many of which have not been investigated for their ...


Structural Basis For Mutation-Induced Destabilization Of Profilin 1 In Als, Sivakumar Boopathy, Tania V. Silvas, Maeve Tischbein, Silvia Jansen, Shivender Shandilya, Jill A. Zitzewitz, John E. Landers, Bruce L. Goode, Celia A. Schiffer, Daryl A. Bosco Jun 2015

Structural Basis For Mutation-Induced Destabilization Of Profilin 1 In Als, Sivakumar Boopathy, Tania V. Silvas, Maeve Tischbein, Silvia Jansen, Shivender Shandilya, Jill A. Zitzewitz, John E. Landers, Bruce L. Goode, Celia A. Schiffer, Daryl A. Bosco

Schiffer Lab Publications

Mutations in profilin 1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS); however, the pathological mechanism of PFN1 in this fatal disease is unknown. We demonstrate that ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported loss-of-function phenotypes in cell-based assays. The source of this destabilization is illuminated by the X-ray crystal structures of several PFN1 proteins, revealing an expanded cavity near the protein core of the ...


Rediii: A Pipeline For Automated Structure Solution, Markus-Frederik Bohn, Celia A. Schiffer May 2015

Rediii: A Pipeline For Automated Structure Solution, Markus-Frederik Bohn, Celia A. Schiffer

Schiffer Lab Publications

High-throughput crystallographic approaches require integrated software solutions to minimize the need for manual effort. REdiii is a system that allows fully automated crystallographic structure solution by integrating existing crystallographic software into an adaptive and partly autonomous workflow engine. The program can be initiated after collecting the first frame of diffraction data and is able to perform processing, molecular-replacement phasing, chain tracing, ligand fitting and refinement without further user intervention. Preset values for each software component allow efficient progress with high-quality data and known parameters. The adaptive workflow engine can determine whether some parameters require modifications and choose alternative software strategies ...


Improving The Resistance Profile Of Hepatitis C Ns3/4a Inhibitors: Dynamic Substrate Envelope Guided Design, Aysegul Ozen, Woody Sherman, Celia Schiffer Jan 2015

Improving The Resistance Profile Of Hepatitis C Ns3/4a Inhibitors: Dynamic Substrate Envelope Guided Design, Aysegul Ozen, Woody Sherman, Celia Schiffer

Celia A. Schiffer

Drug resistance is a principal concern in the treatment of quickly evolving diseases. The viral protease NS3/4A is a primary drug target for the hepatitis C virus (HCV) and is known to evolve resistance mutations in response to drug therapy. At the molecular level, drug resistance reflects a subtle change in the balance of molecular recognition by NS3/4A; the drug resistant protease variants are no longer effectively inhibited by the competitive active site inhibitors but can still process the natural substrates with enough efficiency for viral survival. In previous works we have developed the "substrate envelope" hypothesis, which ...


Development Of A Novel Screening Strategy Designed To Discover A New Class Of Hiv Drugs, Nancy Cheng, Sook-Kyung Lee, P. Donover, Mel Reichman, Celia Schiffer, Emily Hull-Ryde, Ronald Swanstrom, William Janzen Jan 2015

Development Of A Novel Screening Strategy Designed To Discover A New Class Of Hiv Drugs, Nancy Cheng, Sook-Kyung Lee, P. Donover, Mel Reichman, Celia Schiffer, Emily Hull-Ryde, Ronald Swanstrom, William Janzen

Celia A. Schiffer

Current antiretroviral treatments target multiple pathways important for human immunodeficiency virus (HIV) multiplication, including viral entry, synthesis and integration of the DNA provirus, and the processing of viral polyprotein precursors. However, HIV is becoming increasingly resistant to these "combination therapies." Recent findings show that inhibition of HIV Gag protein cleavage into its two structural proteins, matrix (MA) and capsid (CA), has a devastating effect on viral production, revealing a potential new target class for HIV treatment. Unlike the widely used HIV protease inhibitors, this new class of inhibitor would target the substrate, not the protease enzyme itself. This approach offers ...


Crystal Structures Of Human Ctbp In Complex With Substrate Mtob Reveal Active Site Features Useful For Inhibitor Design, Brendan Hilbert, Steven Grossman, Celia Schiffer, William Royer Jan 2015

Crystal Structures Of Human Ctbp In Complex With Substrate Mtob Reveal Active Site Features Useful For Inhibitor Design, Brendan Hilbert, Steven Grossman, Celia Schiffer, William Royer

Celia A. Schiffer

The oncogenic corepressors C-terminal Binding Protein (CtBP) 1 and 2 harbor regulatory d-isomer specific 2-hydroxyacid dehydrogenase (d2-HDH) domains. 4-Methylthio 2-oxobutyric acid (MTOB) exhibits substrate inhibition and can interfere with CtBP oncogenic activity in cell culture and mice. Crystal structures of human CtBP1 and CtBP2 in complex with MTOB and NAD(+) revealed two key features: a conserved tryptophan that likely contributes to substrate specificity and a hydrophilic cavity that links MTOB with an NAD(+) phosphate. Neither feature is present in other d2-HDH enzymes. These structures thus offer key opportunities for the development of highly selective anti-neoplastic CtBP inhibitors. Elsevier B.V ...


Amalgamation Of Nucleosides And Amino Acids In Antibiotic Biosynthesis, Sandra H. Barnard Jan 2013

Amalgamation Of Nucleosides And Amino Acids In Antibiotic Biosynthesis, Sandra H. Barnard

Theses and Dissertations--Pharmacy

The rapid increase in antibiotic resistance demands the identification of novel antibiotics with novel targets. One potential antibacterial target is the biosynthesis of peptidoglycan cell wall, which is both ubiquitous and necessary for bacterial survival. Both the caprazamycin-related compounds A-90289 and muraminomicin, as well as the capuramycin-related compounds A-503083 and A-102395 are potent inhibitors of the translocase I enzyme, one of the key enzymes required for cell wall biosynthesis. The caprazamycin-related compounds contain a core nonproteinogen b-hydroxy-a-amino acid referred to as 5’-C-glycyluridine (GlyU). Residing within the biosynthetic gene clusters of the aforementioned compounds is a shared open reading ...


Breast Tumour Initiating Cell Fate Is Regulated By Microenvironmental Cues From An Extracellular Matrix, S. Saha, Pang-Kuo Lo, X. Duan, Hexin Chen, Qian Wang Jan 2012

Breast Tumour Initiating Cell Fate Is Regulated By Microenvironmental Cues From An Extracellular Matrix, S. Saha, Pang-Kuo Lo, X. Duan, Hexin Chen, Qian Wang

Faculty Publications

Cancer stem cells, also known as tumour-initiating cells (TICs), are identified as highly tumorigenic population within tumours and hypothesized to be main regulators in tumour growth, metastasis and relapse. Evidence also suggests that a tumour microenvironment plays a critical role in the development and progression of cancer, by constantly modulating cell–matrix interactions. Scientists have tried to characterize and identify the TIC population but the actual combination of extracellular components in deciphering the fate of TICs has not been explored. The basic unanswered question is the phenotypic stability of this TIC population in a tissue extracellular matrix setting. The in ...