Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Mechanism For Apobec3g Catalytic Exclusion Of Rna And Non-Substrate Dna, William C. Solomon, Wazo Myint, Shurong Hou, Tapan Kanai, Rashmi Tripathi, Nese Kurt Yilmaz, Celia A. Schiffer, Hiroshi Matsuo Aug 2019

Mechanism For Apobec3g Catalytic Exclusion Of Rna And Non-Substrate Dna, William C. Solomon, Wazo Myint, Shurong Hou, Tapan Kanai, Rashmi Tripathi, Nese Kurt Yilmaz, Celia A. Schiffer, Hiroshi Matsuo

Schiffer Lab Publications

The potent antiretroviral protein APOBEC3G (A3G) specifically targets and deaminates deoxycytidine nucleotides, generating deoxyuridine, in single stranded DNA (ssDNA) intermediates produced during HIV replication. A non-catalytic domain in A3G binds strongly to RNA, an interaction crucial for recruitment of A3G to the virion; yet, A3G displays no deamination activity for cytidines in viral RNA. Here, we report NMR and molecular dynamics (MD) simulation analysis for interactions between A3Gctd and multiple substrate or non-substrate DNA and RNA, in combination with deamination assays. NMR ssDNA-binding experiments revealed that the interaction with residues in helix1 and loop1 (T201-L220) distinguishes the binding mode of ...


Thioredoxin Modulates Protein Arginine Deiminase 4 (Pad4)-Catalyzed Citrullination, Mitesh Nagar, Ronak Tilvawala, Paul R. Thompson Feb 2019

Thioredoxin Modulates Protein Arginine Deiminase 4 (Pad4)-Catalyzed Citrullination, Mitesh Nagar, Ronak Tilvawala, Paul R. Thompson

Open Access Articles

Protein citrullination is a post-translational modification catalyzed by the protein arginine deiminases (PADs). This modification plays a crucial role in the pathophysiology of numerous autoimmune disorders including RA. Recently, there has been a growing interest in investigating physiological regulators of PAD activity to understand the primary cause of the associated disorders. Apart from calcium, it is well-documented that a reducing environment activates the PADs. Although the concentration of thioredoxin (hTRX), an oxidoreductase that maintains the cellular reducing environment, is elevated in RA patients, its contribution toward RA progression or PAD activity has not been explored. Herein, we demonstrate that hTRX ...