Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Nonlinear Oscillatory Dynamics Of The Hardening Of Calcium Phosphate Bone Cements, Vuk Uskoković, Julietta V. Rau Aug 2017

Nonlinear Oscillatory Dynamics Of The Hardening Of Calcium Phosphate Bone Cements, Vuk Uskoković, Julietta V. Rau

Pharmacy Faculty Articles and Research

Here we report on the nonlinear, oscillatory dynamics detected in the evolution of phase composition during the setting of different calcium phosphate cements, two of which evolved toward brushite and one toward hydroxyapatite as the final product. Whereas both brushite-forming cements contained iondoped b-tricalcium phosphate as the initial phase, the zinc-containing one yielded scholzite as an additional phase during setting and the oscillations between these two products were pronounced throughout the entire 80 h setting period, long after the hardening processes was over from the mechanical standpoint. Oscillations in the copper-containing system involved the amount of brushite as the main ...


Poly(Ethyl Glyoxylate) Solid-Core Particles For Drug Delivery, Michael Thomas Gambles Aug 2017

Poly(Ethyl Glyoxylate) Solid-Core Particles For Drug Delivery, Michael Thomas Gambles

Electronic Thesis and Dissertation Repository

The ability to trigger the degradation of polymeric nanoparticles (NPs) by a specific stimulus can provide a method of improved drug targeting and selective release capabilities in vivo. The challenge for most polymeric drug delivery systems remains the necessity for many stimuli events to trigger the release of cargo. Polymeric nanotechnology containing “self-immolative polymers” looks to alleviate the reliance on high concentrations of stimuli by undergoing complete end-to-end depolymerization via a single stimulus-mediated reaction of an end-cap. Herein, NPs were developed using poly(ethyl glyoxylate) (PEtG) blended with poly(d,l-lactic acid) (PLA) to encapsulate a hydrophobic cargo to be ...


Cytotoxic And Antimicrobial Effects Of Silver-Containing Surfaces, Sarah Goderecci Mar 2017

Cytotoxic And Antimicrobial Effects Of Silver-Containing Surfaces, Sarah Goderecci

Theses and Dissertations

This study examines applications of sputtered silver coatings as alternatives to traditional antibiotic treatments. Given the increase in reports of antibiotic-resistant bacteria, new treatments and coatings for in-dwelling medical devices such as catheters and orthopedic implants are necessary. Silver oxide films were deposited onto Ti surfaces to examine the efficacy of such coatings against a variety of bacterial species both in vitro and in vivo. Bacterial growth studies showed that coatings exhibited antimicrobial activity against a range of bacterial species acting either in a bacteriostatic or bactericidal mechanism, depending on the target. Limited toxicity to in vitro mammalian cells was ...


Nitric Oxide Release From Poly(Lactic-Co-Glycolic Acid) Nanoparticles And Titanium Alloy, Nina A. Reger Jan 2017

Nitric Oxide Release From Poly(Lactic-Co-Glycolic Acid) Nanoparticles And Titanium Alloy, Nina A. Reger

Electronic Theses and Dissertations

Current methods for the treatment of bacterial infection involve the use of systemic antibiotics, which are high concentrations of antibiotics delivered over a long period time. Unfortunately, the use of systemic antibiotics can cause harmful side effects to the patient and increases the possibility for antibiotic resistance. The delivery of antibiotics or alternative antimicrobial compounds, such as nitric oxide, directly to the site of infection would decrease the amount of antibiotic necessary to treat a bacterial infection.

Poly (lactic-co-glycolic acid)/polyvinyl alcohol nanoparticles and a titanium- aluminum-vanadium metal oxide alloy implant were surface functionalized to deliver nitric oxide. Polymer nanoparticles ...


Nanoparticle As Supramolecular Platform For Delivery And Bioorthogonal Catalysis, Gulen Yesilbag Tonga Jan 2017

Nanoparticle As Supramolecular Platform For Delivery And Bioorthogonal Catalysis, Gulen Yesilbag Tonga

Doctoral Dissertations

Nanoparticles (NPs) are being investigated widely for many applications including imaging, drug delivery, therapeutics, materials, and catalysis due to their unique and tunable physical and chemical properties. Among NPs, gold nanoparticles (AuNPs) have attracted great attention due to ease of synthesis and surface functionalization, inertness of the core, biocompatibility, and functional versatility. Introducing supramolecular chemistry into the nanoparticle-based platforms brings out controllable properties, dynamic self assembly processes, and adjustable performance. My research has focused on the synthesis of AuNPs bearing different surface functionalities and their host-guest interactions with synthetic small molecules or commercially available hydrophobic catalysts for delivery and therapeutic ...


Synthesis Of Multifunctional Polyacrylates And A Binding Group To Hemoglobin For The Treatment Of Traumatic Brain Injuries, Marina Michaud Jan 2017

Synthesis Of Multifunctional Polyacrylates And A Binding Group To Hemoglobin For The Treatment Of Traumatic Brain Injuries, Marina Michaud

University Honors Program Theses

Hemoglobin based oxygen carriers (HBOCs) hold promise as an effective emergency treatment of severe traumatic brain injuries (TBI). In the latest generation of HBOCs, polynitroxyl-pegylated hemoglobin (PNPH), cell-free hemoglobin is modified with TEMPO and PEG which reduce the toxicities associated with earlier generations of HBOCs. In our efforts to optimize the economic and therapeutic impacts of PNPH’s we have synthesized polydimethylaminoethyl methacrylate (poly-DMAEMA) under controlled living conditions via reverse addition-fragmentation chain transfer (RAFT) polymerization. The poly-DMAEMA was then successfully functionalized via quaternization of its NMe2 groups using chloroacetate derivatives of the TEMPO and PEG. This process was quantitative ...


Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski Jan 2017

Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski

Theses and Dissertations--Pharmacy

RNA nanotechnology is an emerging field that holds great promise for advancing drug delivery and materials science. Recently, RNA nanoparticles have seen increased use as an in vivo delivery system. RNA was once thought to have little potential for in vivo use due to biological and thermodynamic stability issues. However, these issues have been solved by: (1) Finding of a thermodynamically stable three-way junction (3WJ) motif; (2) Chemical modifications to RNA confer enzymatic stability in vivo; and (3) the finding that RNA nanoparticles exhibit low immunogenicity in vivo.

In vivo biodistribution and pharmacokinetics are affected by the physicochemical properties, such ...