Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Chemistry

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 16 of 16

Full-Text Articles in Medicinal-Pharmaceutical Chemistry

Tumor-Targeting Fluorinated Phthalocyanines For Theranostic Applications, Erik Nathaniel Carrión May 2018

Tumor-Targeting Fluorinated Phthalocyanines For Theranostic Applications, Erik Nathaniel Carrión

Seton Hall University Dissertations and Theses (ETDs)

Hydrocarbon-based therapeutics and imaging agents are prone to chemical oxidation and degradation resulting in loss of activity and limited functional utility. Thus, more material is required to achieve long-lasting therapeutic effects. Phthalocyanines (Pcs) and their metal complexes (PcMs) can be utilized as prodrugs requiring only renewable energy resources namely, air and light, for cancer therapy and diagnostic (theranostic) applications related to photodynamic therapy (PDT). Replacement of labile C-H bonds in the Pc scaffold with a combination of fluoro and perfluoroisopropyl groups has resulted in a stable yet reactive oxidation catalyst of biological significance and importance. For example, F64PcZn ...


Poly(Ethyl Glyoxylate) Solid-Core Particles For Drug Delivery, Michael Thomas Gambles Aug 2017

Poly(Ethyl Glyoxylate) Solid-Core Particles For Drug Delivery, Michael Thomas Gambles

Electronic Thesis and Dissertation Repository

The ability to trigger the degradation of polymeric nanoparticles (NPs) by a specific stimulus can provide a method of improved drug targeting and selective release capabilities in vivo. The challenge for most polymeric drug delivery systems remains the necessity for many stimuli events to trigger the release of cargo. Polymeric nanotechnology containing “self-immolative polymers” looks to alleviate the reliance on high concentrations of stimuli by undergoing complete end-to-end depolymerization via a single stimulus-mediated reaction of an end-cap. Herein, NPs were developed using poly(ethyl glyoxylate) (PEtG) blended with poly(d,l-lactic acid) (PLA) to encapsulate a hydrophobic cargo to be ...


Cytotoxic And Antimicrobial Effects Of Silver-Containing Surfaces, Sarah Goderecci Mar 2017

Cytotoxic And Antimicrobial Effects Of Silver-Containing Surfaces, Sarah Goderecci

Theses and Dissertations

This study examines applications of sputtered silver coatings as alternatives to traditional antibiotic treatments. Given the increase in reports of antibiotic-resistant bacteria, new treatments and coatings for in-dwelling medical devices such as catheters and orthopedic implants are necessary. Silver oxide films were deposited onto Ti surfaces to examine the efficacy of such coatings against a variety of bacterial species both in vitro and in vivo. Bacterial growth studies showed that coatings exhibited antimicrobial activity against a range of bacterial species acting either in a bacteriostatic or bactericidal mechanism, depending on the target. Limited toxicity to in vitro mammalian cells was ...


Synthesis Of Multifunctional Polyacrylates And A Binding Group To Hemoglobin For The Treatment Of Traumatic Brain Injuries, Marina Michaud Jan 2017

Synthesis Of Multifunctional Polyacrylates And A Binding Group To Hemoglobin For The Treatment Of Traumatic Brain Injuries, Marina Michaud

University Honors Program Theses

Hemoglobin based oxygen carriers (HBOCs) hold promise as an effective emergency treatment of severe traumatic brain injuries (TBI). In the latest generation of HBOCs, polynitroxyl-pegylated hemoglobin (PNPH), cell-free hemoglobin is modified with TEMPO and PEG which reduce the toxicities associated with earlier generations of HBOCs. In our efforts to optimize the economic and therapeutic impacts of PNPH’s we have synthesized polydimethylaminoethyl methacrylate (poly-DMAEMA) under controlled living conditions via reverse addition-fragmentation chain transfer (RAFT) polymerization. The poly-DMAEMA was then successfully functionalized via quaternization of its NMe2 groups using chloroacetate derivatives of the TEMPO and PEG. This process was quantitative ...


Nitric Oxide Release From Poly(Lactic-Co-Glycolic Acid) Nanoparticles And Titanium Alloy, Nina A. Reger Jan 2017

Nitric Oxide Release From Poly(Lactic-Co-Glycolic Acid) Nanoparticles And Titanium Alloy, Nina A. Reger

Electronic Theses and Dissertations

Current methods for the treatment of bacterial infection involve the use of systemic antibiotics, which are high concentrations of antibiotics delivered over a long period time. Unfortunately, the use of systemic antibiotics can cause harmful side effects to the patient and increases the possibility for antibiotic resistance. The delivery of antibiotics or alternative antimicrobial compounds, such as nitric oxide, directly to the site of infection would decrease the amount of antibiotic necessary to treat a bacterial infection.

Poly (lactic-co-glycolic acid)/polyvinyl alcohol nanoparticles and a titanium- aluminum-vanadium metal oxide alloy implant were surface functionalized to deliver nitric oxide. Polymer nanoparticles ...


Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski Jan 2017

Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski

Theses and Dissertations--Pharmacy

RNA nanotechnology is an emerging field that holds great promise for advancing drug delivery and materials science. Recently, RNA nanoparticles have seen increased use as an in vivo delivery system. RNA was once thought to have little potential for in vivo use due to biological and thermodynamic stability issues. However, these issues have been solved by: (1) Finding of a thermodynamically stable three-way junction (3WJ) motif; (2) Chemical modifications to RNA confer enzymatic stability in vivo; and (3) the finding that RNA nanoparticles exhibit low immunogenicity in vivo.

In vivo biodistribution and pharmacokinetics are affected by the physicochemical properties, such ...


Nanoparticle As Supramolecular Platform For Delivery And Bioorthogonal Catalysis, Gulen Yesilbag Tonga Jan 2017

Nanoparticle As Supramolecular Platform For Delivery And Bioorthogonal Catalysis, Gulen Yesilbag Tonga

Doctoral Dissertations

Nanoparticles (NPs) are being investigated widely for many applications including imaging, drug delivery, therapeutics, materials, and catalysis due to their unique and tunable physical and chemical properties. Among NPs, gold nanoparticles (AuNPs) have attracted great attention due to ease of synthesis and surface functionalization, inertness of the core, biocompatibility, and functional versatility. Introducing supramolecular chemistry into the nanoparticle-based platforms brings out controllable properties, dynamic self assembly processes, and adjustable performance. My research has focused on the synthesis of AuNPs bearing different surface functionalities and their host-guest interactions with synthetic small molecules or commercially available hydrophobic catalysts for delivery and therapeutic ...


Fluorinated Metallo Phthalocyanines For Chemical And Biological Catalysis, Hemantbhai H. Patel Aug 2015

Fluorinated Metallo Phthalocyanines For Chemical And Biological Catalysis, Hemantbhai H. Patel

Seton Hall University Dissertations and Theses (ETDs)

The rational design of robust oxidation catalysts based on organic molecules is hindered by the presence of labile C-H bonds. We have shown recently that replacing all C-H bonds by a combination of fluoro- and perfluoro-groups in a bioinspired Cytochrome P450 model based on a phthalocyanine, Pc, scaffold results in a stable yet reactive oxidation catalyst. The Pc cobalt complex catalyzes, for example, the aerobic oxidation of thiols to disulfides, a reaction of both biological significance and industrial importance.

The presence of robust C-F bonds, however, renders the catalyst unsuitable for attachment to solid-state supports, except via van der Waals ...


Design, Synthesis, And Reactivity Of Bimetallic Complexes Of Dimethylplatinum(Ii) Containing Ditopic Ligands, Matthew S. Mccready Apr 2015

Design, Synthesis, And Reactivity Of Bimetallic Complexes Of Dimethylplatinum(Ii) Containing Ditopic Ligands, Matthew S. Mccready

Electronic Thesis and Dissertation Repository

This thesis describes a study of monometallic and bimetallic dimethylplatinum(II) complexes containing ditopic nitrogen donor ligands. This work details the design and synthesis of side-to-side and cofacial arranged ligands and their respective coordination chemistry. The study of the synthesis, characterization and reaction mechanisms of the various dimethylplatinum(II) complexes is outlined in detail with special emphasis focused on the reactivity of the complexes towards oxidative addition.

The ditopic ligand 6-dppd, 1,4-di(2-pyridyl)-5,6,7,8,9,10-hexahydrocycloocta[d]pyridazine, was observed to coordinate only a single equivalent of a platinum(II) center. The inability to coordinate a ...


Responsive Supramolecular Assemblies Based On Amphiphilic Polymers And Hybrid Materials, Longyu Li Jan 2015

Responsive Supramolecular Assemblies Based On Amphiphilic Polymers And Hybrid Materials, Longyu Li

Doctoral Dissertations

The design and synthesis of responsive supramolecular assemblies are of great interest due to their applications in a variety of areas such as drug delivery and sensing. We have developed a facile method to prepare self-crosslinking disulfide-based nanogels derived from an amphiphilic random copolymer containing a hydrophilic oligo-(ethylene glycol)-based side-chain functionality and a hydrophobic pyridyl disulfide functional group. This thesis first provides a concept of studying the influence of Hofmeister ions on the size and guest encapsulation stability of a polymeric nanogel. The size and core density of nanogel can be fine-tuned through the addition of both chaotropes ...


Design, Synthesis, And Bio Relevant Applications Of Zwitterionic Amphiphilic Macromolecular Assemblies, Rajasekhar Reddy Rami Reddy Jan 2015

Design, Synthesis, And Bio Relevant Applications Of Zwitterionic Amphiphilic Macromolecular Assemblies, Rajasekhar Reddy Rami Reddy

Doctoral Dissertations

Supramolecular nanoassemblies capable of reducing non-specific interactions with biological macromolecules, such as proteins, are of great importance for various biological applications especially for targeted drug delivery therapeutics. Recently, zwitterionic materials have been shown to reduce non-specific interactions with biomolecules, owing both to their charge neutrality and their ability to form strong hydration layer around zwitterions via electrostatic interactions. This dissertation focuses on design, synthesis, thorough characterization, and applications of zwitterionic amphiphilic dendrimers and polymeric materials. Firstly, A new triazole-based zwitterionic moiety was conceived and incorporated as the hydrophilic functionality in facially amphiphilic dendrons. Self-assembly characteristics and the structural and functional ...


Synthesis And Applications Of Mutimodal Hybrid Albumin Nanoparticles For Chemotherapeutic Drug Delivery And Phototherml Therapy Platforms, Donna V. Peralta Aug 2014

Synthesis And Applications Of Mutimodal Hybrid Albumin Nanoparticles For Chemotherapeutic Drug Delivery And Phototherml Therapy Platforms, Donna V. Peralta

University of New Orleans Theses and Dissertations

Progress has been made in using human serum albumin nanoparticles (HSAPs) as carrier systems for targeted treatment of cancer. Human serum albumin (HSA), the most abundant human blood protein, can form HSAPs via a desolvation and crosslinking method, with the size of the HSAPs having crucial importance for drug loading and in vivo performance. Gold nanoparticles have also gained medicinal attention due to their ability to absorb near-infrared (NIR) light. These relatively non-toxic particles offer combinational therapy via imaging and photothermal therapy (PPTT) capabilities.

A desolvation and crosslinking approach was employed to encapsulate gold nanoparticles (AuNPs), hollow gold nanoshells (AuNSs ...


Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres Jan 2014

Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres

Doctoral Dissertations

Proteins have the capacity to bind specific sets of compounds known as ligands, these are small molecules with a recurrent theme in their molecular design that is a characteristic exploited here to (i) identify particular affinities of small molecules for proteins with the aim of using them as ligands, inhibitors, or targeting moieties in more complex systems by means of a methodology that screens small molecules based on protein affinity; (ii) decorate a self-assembling supramolecular system at different positions, making it responsive to a complementary protein with the aim of exploring differences in disassembly and sensitivity of the release of ...


Carboxylic Acid Functionalized Butyl Rubber: From Synthesis To Applications, Matthew John Mceachran Feb 2013

Carboxylic Acid Functionalized Butyl Rubber: From Synthesis To Applications, Matthew John Mceachran

Electronic Thesis and Dissertation Repository

Butyl Rubber (RB) is a copolymer of isobutylene (IB) with small percentages of isoprene (IP). Typically these IP units serve as sites for the covalent cross-linking of the rubber, but they can also serve as sites to further functionalize RB. These modifications can expand the potential applications of RB. This thesis describes the synthesis of carboxylic acid functionalized RB and some properties and applications of these materials.


Supercharging: An Investigation Into The Effects Of External Amino Acid Residue Charge On The Solubility And Internal Electric Character Of Bound Ligands In A Heme-Binding De Novo-Designed Protein, Cooper French Jan 2013

Supercharging: An Investigation Into The Effects Of External Amino Acid Residue Charge On The Solubility And Internal Electric Character Of Bound Ligands In A Heme-Binding De Novo-Designed Protein, Cooper French

Dissertations and Theses

De novo protein design offers many interesting prospects both as a means to better understand natural protein dynamics and as a potential resource in biomedical and industrial applications. In this work I describe the modification of a simple, well-characterized heme-binding protein by altering side chain residue identities on the hydrophilic surface of the protein to produce variants with a range of net external charges. These charge modifications had a significant impact on nearly every measurable character of the protein. This work establishes the hard limits of supercharging within our experimental protein scaffold system, demonstrating that excessive positive charge increased the ...


Examination Of An Aloe Vera Galacturonate Polysaccharide Capable Of In Situ Gelation For The Controlled Release Of Protein Therapeutics, Shawn David Mcconaughy Dec 2008

Examination Of An Aloe Vera Galacturonate Polysaccharide Capable Of In Situ Gelation For The Controlled Release Of Protein Therapeutics, Shawn David Mcconaughy

Dissertations

A therapeutic delivery platform has been investigated with the ultimate goal of designing a sustained protein release matrix utilizing an in-situ gelling, acidic polysaccharide derived from the Aloe vera plant. The Aloe vera polysaccharide (AvP) has been examined in order to determine how chemical composition, structure, molecular weight and solution behavior affect gelation and protein/peptide delivery. Correlations are drawn between structural characteristics and solution behavior in order to determine the impact of polymer conformation and solvation on gel formation under conditions designed to simulate nasal applications. Steady state and dynamic rheology, classic and dynamic light scattering, zeta potential, pulse ...