Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Necroptosis

Cellular and Molecular Physiology

2017

Articles 1 - 2 of 2

Full-Text Articles in Cell Biology

Regulation Of Ripk1 Activation By Tak1-Mediated Phosphorylation Dictates Apoptosis And Necroptosis, Jiefei Geng, Yasushi Ito, Linyu Shi, Palak Amin, Jiachen Chu, Amanda Tomie Ouchida, Adnan Kasim Mookhtiar, Heng Zhao, Daichao Xu, Bing Shan, Ayaz Najafov, Guangping Gao, Shizuo Akira, Junying Yuan Aug 2017

Regulation Of Ripk1 Activation By Tak1-Mediated Phosphorylation Dictates Apoptosis And Necroptosis, Jiefei Geng, Yasushi Ito, Linyu Shi, Palak Amin, Jiachen Chu, Amanda Tomie Ouchida, Adnan Kasim Mookhtiar, Heng Zhao, Daichao Xu, Bing Shan, Ayaz Najafov, Guangping Gao, Shizuo Akira, Junying Yuan

Open Access Articles

Stimulation of TNFR1 by TNFalpha can promote three distinct alternative mechanisms of cell death: necroptosis, RIPK1-independent and -dependent apoptosis. How cells decide which way to die is unclear. Here, we report that TNFalpha-induced phosphorylation of RIPK1 in the intermediate domain by TAK1 plays a key role in regulating this critical decision. Using phospho-Ser321 as a marker, we show that the transient phosphorylation of RIPK1 intermediate domain induced by TNFalpha leads to RIPK1-independent apoptosis when NF-kappaB activation is inhibited by cycloheximide. On the other hand, blocking Ser321 phosphorylation promotes RIPK1 activation and its interaction with FADD to mediate RIPK1-dependent apoptosis (RDA ...


Distinct Kinase-Independent Role Of Ripk3 In Cd11c+ Mononuclear Phagocytes In Cytokine-Induced Tissue Repair, Kenta Moriwaki, Sakthi Balaji, John Bertin, Peter J. Gough, Francis Ka-Ming Chan Mar 2017

Distinct Kinase-Independent Role Of Ripk3 In Cd11c+ Mononuclear Phagocytes In Cytokine-Induced Tissue Repair, Kenta Moriwaki, Sakthi Balaji, John Bertin, Peter J. Gough, Francis Ka-Ming Chan

Open Access Articles

Receptor interacting protein kinase 3 (RIPK3) induces necroptosis, a type of regulated necrosis, through its kinase domain and receptor interacting protein (RIP) homotypic interaction motif (RHIM). In addition, RIPK3 has been shown to regulate NLRP3 inflammasome and nuclear factor kappaB (NF-kappaB) activation. However, the relative contribution of these signaling pathways to RIPK3-dependent inflammation in distinct immune effectors is unknown. To investigate these questions, we generated RIPK3-GFP reporter mice. We found that colonic CD11c+CD11b+CD14+ mononuclear phagocytes (MNPs) expressed the highest level of RIPK3 in the lamina propria. Consequently, deletion of the RIPK3 RHIM in CD11c+ cells alone was sufficient ...