Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Cell Biology

Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie Oct 2017

Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie

Molecular and Cellular Biochemistry Faculty Publications

Rationale: Cancer stem cells (CSCs) have been implicated as the seeds of therapeutic resistance and metastasis, due to their unique abilities of self-renew, wide differentiation potentials and resistance to most conventional therapies. It is a proactive strategy for cancer therapy to eradicate CSCs. Methods: Tumor tissue-derived breast CSCs (BCSC), including XM322 and XM607, were isolated by fluorescence-activated cell sorting (FACS); while cell line-derived BCSC, including MDA-MB-231.SC and MCF-7.SC, were purified by magnetic-activated cell sorting (MACS). Analyses of microRNA and mRNA expression array profiles were performed in multiple breast cell lines. The mentioned nanoparticles were constructed following the standard ...


A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar Aug 2017

A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar

Radiation Medicine Faculty Publications

Primary tumors are often heterogeneous, composed of therapy-sensitive and emerging therapy-resistant cancer cells. Interestingly, treatment of therapy-sensitive tumors in heterogeneous tumor microenvironments results in apoptosis of therapy-resistant tumors. In this study, we identify a prostate apoptosis response-4 (Par-4) amino-terminal fragment (PAF) that is released by diverse therapy-sensitive cancer cells following therapy-induced caspase cleavage of the tumor suppressor Par-4 protein. PAF caused apoptosis in cancer cells resistant to therapy and inhibited tumor growth. A VASA segment of Par-4 mediated its binding and degradation by the ubiquitin ligase Fbxo45, resulting in loss of Par-4 proapoptotic function. Conversely, PAF, which contains this VASA ...


Paracrine Regulation Of Melanocyte Genomic Stability: A Focus On Nucleotide Excision Repair, Stuart Gordon Jarrett, Katharine Marie Carter, John August D'Orazio May 2017

Paracrine Regulation Of Melanocyte Genomic Stability: A Focus On Nucleotide Excision Repair, Stuart Gordon Jarrett, Katharine Marie Carter, John August D'Orazio

Markey Cancer Center Faculty Publications

UV radiation is a major environmental risk factor for the development of melanoma by causing DNA damage and mutations. Resistance to UV damage is largely determined by the capacity of melanocytes to respond to UV injury by repairing mutagenic photolesions. The nucleotide excision repair (NER) pathway is the major mechanism by which cells correct UV photodamage. This multistep process involves the basic steps of damage recognition, isolation, localized strand unwinding, assembly of a repair complex, excision of the damage‐containing strand 3′ and 5′ to the photolesion, synthesis of a sequence‐appropriate replacement strand, and finally ligation to restore continuity ...


Relb Expression Determines The Differential Effects Of Ascorbic Acid In Normal And Cancer Cells, Xiaowei Wei, Yong Xu, Fang Fang Xu, Luksana Chaiswing, David M. Schnell, Teresa Noel, Chi Wang, Jinfei Chen, Daret K. St. Clair, William H. St. Clair Mar 2017

Relb Expression Determines The Differential Effects Of Ascorbic Acid In Normal And Cancer Cells, Xiaowei Wei, Yong Xu, Fang Fang Xu, Luksana Chaiswing, David M. Schnell, Teresa Noel, Chi Wang, Jinfei Chen, Daret K. St. Clair, William H. St. Clair

Toxicology and Cancer Biology Faculty Publications

Cancer cells typically experience higher oxidative stress than normal cells, such that elevating pro-oxidant levels can trigger cancer cell death. Although pre-exposure to mild oxidative agents will sensitize cancer cells to radiation, this pre-exposure may also activate the adaptive stress defense system in normal cells. Ascorbic acid is a prototype redox modulator that when infused intravenously appears to kill cancers without injury to normal tissues; however, the mechanisms involved remain elusive. In this study, we show how ascorbic acid kills cancer cells and sensitizes prostate cancer to radiation therapy while also conferring protection upon normal prostate epithelial cells against radiation-induced ...


Analysis Of Rna Expression Of Normal And Cancer Tissues Reveals High Correlation Of Cop9 Gene Expression With Respiratory Chain Complex Components, Christina A. Wicker, Tadahide Izumi Dec 2016

Analysis Of Rna Expression Of Normal And Cancer Tissues Reveals High Correlation Of Cop9 Gene Expression With Respiratory Chain Complex Components, Christina A. Wicker, Tadahide Izumi

Toxicology and Cancer Biology Faculty Publications

BACKGROUND: The COP9 signalosome, composed of eight subunits, is implicated in cancer genetics with its deneddylase activity to modulate cellular concentration of oncogenic proteins such as IkB and TGFβ. However, its function in the normal cell physiology remains elusive. Primarily focusing on gene expression data of the normal tissues of the head and neck, the cancer genome atlas (TCGA) database was used to identify groups of genes that were expressed synergistically with the COP9 genes, particularly with the COPS5 (CSN5), which possesses the catalytic activity of COP9.

RESULTS: Expressions of seven of the COP9 genes (COPS2, COPS3, COPS4, COPS5, COPS6 ...


Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao Oct 2016

Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao

Markey Cancer Center Faculty Publications

The proper establishment of epithelial polarity allows cells to sense and respond to signals that arise from the microenvironment in a spatiotemporally controlled manner. Atypical PKCs (aPKCs) are implicated as key regulators of epithelial polarity. However, the molecular mechanism underlying the negative regulation of aPKCs remains largely unknown. In this study, we demonstrated that PH domain leucine-rich repeat protein phosphatase (PHLPP), a novel family of Ser/Thr protein phosphatases, plays an important role in regulating epithelial polarity by controlling the phosphorylation of both aPKC isoforms. Altered expression of PHLPP1 or PHLPP2 disrupted polarization of Caco2 cells grown in 3D cell ...


P-Rex1 Promotes Resistance To Vegf/Vegfr-Targeted Therapy In Prostate Cancer, Hira Lal Goel, Bryan Pursell, Leonard D. Shultz, Dale L. Greiner, Rolf A Brekken, Craig W. Vander Kooi, Arthur M. Mercurio Mar 2016

P-Rex1 Promotes Resistance To Vegf/Vegfr-Targeted Therapy In Prostate Cancer, Hira Lal Goel, Bryan Pursell, Leonard D. Shultz, Dale L. Greiner, Rolf A Brekken, Craig W. Vander Kooi, Arthur M. Mercurio

Molecular and Cellular Biochemistry Faculty Publications

Autocrine VEGF signaling is critical for sustaining prostate and other cancer stem cells (CSCs), and it is a potential therapeutic target, but we observed that CSCs isolated from prostate tumors are resistant to anti-VEGF (bevacizumab) and anti-VEGFR (sunitinib) therapy. Intriguingly, resistance is mediated by VEGF/neuropilin signaling, which is not inhibited by bevacizumab and sunitinib, and it involves the induction of P-Rex1, a Rac GEF, and consequent Rac1-mediated ERK activation. This induction of P-Rex1 is dependent on Myc. CSCs isolated from the PTENpc−/− transgenic model of prostate cancer exhibit Rac1-dependent resistance to bevacizumab. Rac1 inhibition or P-Rex1 downregulation increases ...


A Laminin 511 Matrix Is Regulated By Taz And Functions As The Ligand For The Alpha6bbeta1 Integrin To Sustain Breast Cancer Stem Cells, Cheng Chang, Hira Lal Goel, Huijie Gao, Bryan M. Pursell, Leonard D. Shultz, Dale L. Greiner, Sulev Ingerpuu, Manuel Patarroyo, Shiliang Cao, Elgene Lim, Junhao Mao, Karen Kulju. Mckee, Peter D. Yurchenco, Arthur M. Mercurio May 2015

A Laminin 511 Matrix Is Regulated By Taz And Functions As The Ligand For The Alpha6bbeta1 Integrin To Sustain Breast Cancer Stem Cells, Cheng Chang, Hira Lal Goel, Huijie Gao, Bryan M. Pursell, Leonard D. Shultz, Dale L. Greiner, Sulev Ingerpuu, Manuel Patarroyo, Shiliang Cao, Elgene Lim, Junhao Mao, Karen Kulju. Mckee, Peter D. Yurchenco, Arthur M. Mercurio

Arthur M. Mercurio

Understanding how the extracellular matrix impacts the function of cancer stem cells (CSCs) is a significant but poorly understood problem. We report that breast CSCs produce a laminin (LM) 511 matrix that promotes self-renewal and tumor initiation by engaging the alpha6Bbeta1 integrin and activating the Hippo transducer TAZ. Although TAZ is important for the function of breast CSCs, the mechanism is unknown. We observed that TAZ regulates the transcription of the alpha5 subunit of LM511 and the formation of a LM511 matrix. These data establish a positive feedback loop involving TAZ and LM511 that contributes to stemness in breast cancer.


Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives Nov 2014

Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives

David Grünwald

The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3sigma) to be similarly regulated by Nup98. The ...


Id2 Complexes With The Snag Domain Of Snai1 Inhibiting Snai1-Mediated Repression Of Integrin Beta4, Cheng Chang, Xiaofang Yang, Bryan Pursell, Arthur M. Mercurio Nov 2014

Id2 Complexes With The Snag Domain Of Snai1 Inhibiting Snai1-Mediated Repression Of Integrin Beta4, Cheng Chang, Xiaofang Yang, Bryan Pursell, Arthur M. Mercurio

Arthur M. Mercurio

The epithelial-mesenchymal transition (EMT) is a fundamental process that underlies development and cancer. Although the EMT involves alterations in the expression of specific integrins that mediate stable adhesion to the basement membrane, such as alpha6beta4, the mechanisms involved are poorly understood. Here, we report that Snai1 inhibits beta4 transcription by increasing repressive histone modification (trimethylation of histone H3 at K27 [H3K27Me3]). Surprisingly, Snai1 is expressed and localized in the nucleus in epithelial cells, but it does not repress beta4. We resolved this paradox by discovering that Id2 complexes with the SNAG domain of Snai1 on the beta4 promoter and constrains ...


Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari Oct 2013

Killerflip: A Novel Lytic Peptide Specifically Inducing Cancer Cell Death, B Pennarun, G. Gaidos, O Bucur, A Tinari

Open Dartmouth: Faculty Open Access Scholarship

One of the objectives in the development of effective cancer therapy is induction of tumor-selective cell death. Toward this end, we have identified a small peptide that, when introduced into cells via a TAT cell-delivery system, shows a remarkably potent cytoxicity in a variety of cancer cell lines and inhibits tumor growth in vivo, whereas sparing normal cells and tissues. This fusion peptide was named killer FLIP as its sequence was derived from the C-terminal domain of c-FLIP, an anti-apoptotic protein. Using structure activity analysis, we determined the minimal bioactive core of killerFLIP, namely killerFLIP-E. Structural analysis of cells using ...


The Human Phosphotyrosine Signaling Network: Evolution And Hotspots Of Hijacking In Cancer., Lei Li, Chabane Tibiche, Cong Fu, Tomonori Kaneko, Michael F. Moran, Martin Schiller, Shawn Shun-Cheng Li, Edwin Wang Jul 2012

The Human Phosphotyrosine Signaling Network: Evolution And Hotspots Of Hijacking In Cancer., Lei Li, Chabane Tibiche, Cong Fu, Tomonori Kaneko, Michael F. Moran, Martin Schiller, Shawn Shun-Cheng Li, Edwin Wang

Life Sciences Faculty Publications

Phosphotyrosine (pTyr) signaling, which plays a central role in cell-cell and cell-environment interactions, has been considered to be an evolutionary innovation in multicellular metazoans. However, neither the emergence nor the evolution of the human pTyr signaling system is currently understood. Tyrosine kinase (TK) circuits, each of which consists of a TK writer, a kinase substrate, and a related reader, such as Src homology (SH) 2 domains and pTyr-binding (PTB) domains, comprise the core machinery of the pTyr signaling network. In this study, we analyzed the evolutionary trajectories of 583 literature-derived and 50,000 computationally predicted human TK circuits in 19 ...