Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cytoskeleton

Dartmouth College

Articles 1 - 3 of 3

Full-Text Articles in Cell Biology

A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz Aug 2015

A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz

Open Dartmouth: Faculty Open Access Scholarship

Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction ...


Septin Filaments Exhibit A Dynamic, Paired Organization That Is Conserved From Yeast To Mammals, Bradley S. Demay, Xiaobo Bai, Louisa Howard, Patricia Occhipinti, Rebecca A. Meseroll, Elias T. Spiliotis, Rudolf Oldenbourg, Amy S. Gladfelter May 2011

Septin Filaments Exhibit A Dynamic, Paired Organization That Is Conserved From Yeast To Mammals, Bradley S. Demay, Xiaobo Bai, Louisa Howard, Patricia Occhipinti, Rebecca A. Meseroll, Elias T. Spiliotis, Rudolf Oldenbourg, Amy S. Gladfelter

Open Dartmouth: Faculty Open Access Scholarship

The septins are conserved, GTP-binding proteins important for cytokinesis, membrane compartmentalization, and exocytosis. However, it is unknown how septins are arranged within higher-order structures in cells. To determine the organization of septins in live cells, we developed a polarized fluorescence microscopy system to monitor the orientation of GFP dipole moments with high spatial and temporal resolution. When GFP was fused to septins, the arrangement of GFP dipoles reflected the underlying septin organization. We demonstrated in a filamentous fungus, a budding yeast, and a mammalian epithelial cell line that septin proteins were organized in an identical highly ordered fashion. Fluorescence anisotropy ...


Role Of Actin Cytoskeletal Dynamics In Activation Of The Cyclic Amp Pathway And Hwp1 Gene Expression In Candida Albicans, Michael J. Wolyniak, Paula Sundstrom Oct 2007

Role Of Actin Cytoskeletal Dynamics In Activation Of The Cyclic Amp Pathway And Hwp1 Gene Expression In Candida Albicans, Michael J. Wolyniak, Paula Sundstrom

Open Dartmouth: Faculty Open Access Scholarship

Changes in gene expression during reversible bud-hypha transitions of the opportunistic fungal pathogen Candida albicans permit adaptation to environmental conditions that are critical for proliferation in host tissues. Our previous work has shown that the hypha-specific adhesin gene HWP1 is up-regulated by the cyclic AMP (cAMP) signaling pathway. However, little is known about the potential influences of determinants of cell morphology on HWP1 gene expression. We found that blocking hypha formation with cytochalasin A, which destabilizes actin filaments, and with latrunculin A, which sequesters actin monomers, led to a loss of HWP1 gene expression. In contrast, high levels of HWP1 ...