Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Cell Biology

Tumor-Stroma Interactions Differentially Alter Drug Sensitivity Based On The Origin Of Stromal Cells, Benjamin D. Landry Oct 2018

Tumor-Stroma Interactions Differentially Alter Drug Sensitivity Based On The Origin Of Stromal Cells, Benjamin D. Landry

GSBS Dissertations and Theses

Tumor heterogeneity observed between patients has made it challenging to develop universal or broadly effective cancer therapies. Therefore, an ever-growing movement within cancer research aims to tailor cancer therapies to individual patients or specific tumor subtypes. Tumor stratification is generally dictated by the genomic mutation status of the tumor cells themselves. Importantly, non-genetic influences – such as interactions between tumor cells and other components of the tumor microenvironment – have largely been ignored. Therefore, in an effort to increase treatment predictability and efficacy, we investigated how tumor-stroma interactions contribute to drug sensitivity and drug resistance.

I designed a high throughput co-culture screening ...


Dosage Compensation Of Trisomy 21 And Its Implications For Hematopoietic Pathogenesis In Down Syndrome, Jen-Chieh Chiang Nov 2017

Dosage Compensation Of Trisomy 21 And Its Implications For Hematopoietic Pathogenesis In Down Syndrome, Jen-Chieh Chiang

GSBS Dissertations and Theses

Down Syndrome (DS), the most common aneuploidy seen in live-borns, is caused by trisomy for chromosome 21. DS imposes high risks for multiple health issues involving various systems of the body. The genetic complexity of trisomy 21 and natural variation between all individuals has impeded understanding of the specific cell pathologies and pathways involved. In addition, chromosomal disorders have been considered outside the hopeful progress in gene therapies for single-gene disorders. Here we test the feasibility of correcting imbalanced expression of genes across an extra chromosome by expression of a single gene, XIST, the key player in X chromosome inactivation ...


Investigating Structural And Functional Defects In Als-Causing Profilin 1 Variants, Sivakumar Boopathy Sep 2017

Investigating Structural And Functional Defects In Als-Causing Profilin 1 Variants, Sivakumar Boopathy

GSBS Dissertations and Theses

Mutations in profilin 1 (PFN1) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease that targets motor neurons. PFN1 is a 15 kDa protein that is best known for its role in actin dynamics. However, little is known about the pathological mechanisms of PFN1 in ALS. In this dissertation, it is demonstrated that certain familial ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in neuronal cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported functional defects ...


Exploring New Therapeutic Strategies For Osteoarthritis: From Genetic Manipulation Of Skeletal Tissues To Chemically-Modified Synthetic Hydrogels, Henry Huang Mar 2017

Exploring New Therapeutic Strategies For Osteoarthritis: From Genetic Manipulation Of Skeletal Tissues To Chemically-Modified Synthetic Hydrogels, Henry Huang

GSBS Dissertations and Theses

Osteoarthritis (OA), a degenerative disease of articular joints, is the leading cause of chronic disability in the US and affects more than a third of adults over 65 years old. Due to the obesity epidemic and an aging population, the prevalence of OA is expected to rise in both young and old adults. There are no disease modifying OA drugs. Therefore, providing any treatment options that delay the onset or progression of OA is highly desirable. The scope of this dissertation examines two different strategies to promote translational therapies for OA. The first approach investigated whether Smad ubiquitin regulatory factor ...


Histone Deacetylase 3 Coordinates Heart Development Through Stage-Specific Roles In Cardiac Progenitor Cells, Sara L. Lewandowski Dec 2016

Histone Deacetylase 3 Coordinates Heart Development Through Stage-Specific Roles In Cardiac Progenitor Cells, Sara L. Lewandowski

GSBS Dissertations and Theses

Disruptions in cardiac development cause congenital heart disease, the most prevalent and deadly congenital malformation. Genetic and environmental factors are thought to contribute to these defects, however molecular mechanisms remain largely undefined. Recent work highlighted potential roles of chromatin- modifying enzymes in congenital heart disease pathogenesis. Histone deacetylases, a class of chromatin-modifying enzymes, have developmental importance and recognized roles in the mature heart. This thesis aimed to characterize functions of Hdac3 in cardiac development. We found loss of Hdac3 in the primary heart field causes precocious progenitor cell differentiation, resulting in hypoplastic ventricular walls, ventricular septal defect, and mid- gestational ...


The Origin Of Human White, Brown, And Brite/Beige Adipocytes, So Yun Min Dec 2016

The Origin Of Human White, Brown, And Brite/Beige Adipocytes, So Yun Min

GSBS Dissertations and Theses

During embryonic development, adipocytes emerge from microvasculature. Lineage-­‐tracing studies in mice have shown that adipocyte progenitors reside in the adipose tissue capillaries. However, the direct evidence of an association between adipocyte progenitors and vasculature in humans is lacking. A specific class of adipocytes (brown and beige/brite) expresses the uncoupling protein 1 (UCP1), which consumes glucose and fatty acids to generate heat. The abundance of UCP1- containing adipocytes correlates with a lean metabolically healthy phenotype in human. However, a causal relationship between the presence of these cells and metabolic benefits in human is not clear.

In this thesis, I ...


Histopathological Characterization Of The Dystrophic Phenotype And Development Of Therapeutic Candidates For A Gene Therapy Pre-Clinical Study In Dysferlin Deficient Mice, Leticia Fridman Sep 2016

Histopathological Characterization Of The Dystrophic Phenotype And Development Of Therapeutic Candidates For A Gene Therapy Pre-Clinical Study In Dysferlin Deficient Mice, Leticia Fridman

GSBS Dissertations and Theses

Dysferlin deficient muscular dystrophy is a devastating disease that leads to loss of mobility and quality of life in patients. Dysferlin is a 230 kD protein primarily expressed in skeletal muscle that functions in membrane resealing. Dysferlin loss of function leads to a decrease in the membrane resealing response after injury in skeletal muscle, which is thought to cause degeneration of the musculature over time. Dysferlin cDNA is 7.4 kb and exceeds AAV packaging capacity of ~ 5kb. This thesis focuses on the generation of mini dysferlin mutants that can be packaged in AAV for downstream testing of therapeutic efficacy ...


The Smurf2-Yy1-C-Myc Axis In The Germinal Center Reaction And Diffuse Large B Cell Lymphoma: A Dissertation, Sally E. Trabucco Jun 2016

The Smurf2-Yy1-C-Myc Axis In The Germinal Center Reaction And Diffuse Large B Cell Lymphoma: A Dissertation, Sally E. Trabucco

GSBS Dissertations and Theses

Diffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin’s lymphoma. Patients who fail conventional therapy (~50%) have a poor prognosis and few treatment options. It is essential to understand the underlying biological processes, the progression of the disease, and utilize this information to develop new therapeutics.

DLBCL patients with high C-MYC expression have a poor prognosis and new therapeutics for these patients are needed. This thesis describes work testing the hypothesis that JQ1, which can indirectly inhibit C-MYC in some tumors, can be used as an effective treatment for DLBCL. Some tumors have an unknown mechanism causing ...


Characterization Of Higher-Order Chromatin Structure In Bone Differentiation And Breast Cancer: A Dissertation, Ahmet Rasim Barutcu Feb 2016

Characterization Of Higher-Order Chromatin Structure In Bone Differentiation And Breast Cancer: A Dissertation, Ahmet Rasim Barutcu

GSBS Dissertations and Theses

Higher-order genome organization is important for the regulation of gene expression by bringing different cis-regulatory elements and promoters in proximity. The establishment and maintenance of long-range chromatin interactions occur in response to cellular and environmental cues with the binding of transcription factors and chromatin modifiers. Understanding the organization of the nucleus in differentiation and cancer has been a long standing challenge and is still not well-understood. In this thesis, I explore the dynamic changes in the higher-order chromatin structure in bone differentiation and breast cancer. First, we show dynamic chromatin contact between a distal regulatory element and the promoter of ...


Insights Into Melanocyte Regeneration And Melanoma Initiation Using The Zebrafish Model System: A Dissertation, Sharanya Iyengar Oct 2015

Insights Into Melanocyte Regeneration And Melanoma Initiation Using The Zebrafish Model System: A Dissertation, Sharanya Iyengar

GSBS Dissertations and Theses

During regeneration, cells must coordinate proliferation and differentiation to rebuild tissues that are lost. Understanding how source cells execute the regeneration process has been a longstanding goal in regenerative biology with implications in wound healing and cell replacement therapies. Melanocytes are pigment-producing cells in the skin of vertebrates that can be lost during hair graying, injury and disease-related depigmentation. Melanoma is an aggressive skin cancer that develops from melanocytes, and it is hypothesized that melanoma cells have properties that are similar to melanocyte stem cells.

To gain insight into melanocyte regeneration we set out to identify the source of regeneration ...


Exploring The Role Of Fus Mutants From Stress Granule Incorporation To Nucleopathy In Amyotrophic Lateral Sclerosis: A Dissertation, Hae Kyung Ko Sep 2015

Exploring The Role Of Fus Mutants From Stress Granule Incorporation To Nucleopathy In Amyotrophic Lateral Sclerosis: A Dissertation, Hae Kyung Ko

GSBS Dissertations and Theses

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by preferential motor neuron death in the brain and spinal cord. The rapid disease progression results in death due to respiratory failure, typically within 3-5 years after disease onset. While ~90% of cases occur sporadically, remaining 10% of ALS cases show familial inheritance, and the number of genes linked to ALS has increased dramatically over the past decade.

FUS/TLS (Fused in Sarcoma/ Translocated to liposarcoma) is a nucleic acid binding protein that may regulate several cellular functions, including RNA splicing, transcription, DNA damage repair and microRNA biogenesis. More than ...


Investigating The Effects Of Mutant Fus On Stress Response In Amyotrophic Lateral Sclerosis: A Thesis, Laura J. Kaushansky Aug 2015

Investigating The Effects Of Mutant Fus On Stress Response In Amyotrophic Lateral Sclerosis: A Thesis, Laura J. Kaushansky

GSBS Dissertations and Theses

During stress, eukaryotes regulate protein synthesis in part through formation of cytoplasmic, non-membrane-bound complexes called stress granules (SGs). SGs transiently store signaling proteins and stalled translational complexes in response to stress stimuli (e.g. oxidative insult, DNA damage, temperature shifts and ER dysfunction). The functional outcome of SGs is proper translational regulation and signaling, allowing cells to overcome stress.

The fatal motor neuron disease Amyotrophic Lateral Sclerosis (ALS) develops in an age-related manner and is marked by progressive neuronal death, with cytoplasmic protein aggregation, excitotoxicity and increased oxidative stress as major hallmarks. Fused in Sarcoma/Translocated in Liposarcoma (FUS) is ...


Jun Kinases In Hematopoiesis, And Vascular Development And Function: A Dissertation, Kasmir Ramo Jul 2015

Jun Kinases In Hematopoiesis, And Vascular Development And Function: A Dissertation, Kasmir Ramo

GSBS Dissertations and Theses

Arterial occlusive diseases are major causes of morbidity and mortality in industrialized countries and represent a huge economic burden. The extent of the native collateral circulation is an important determinant of blood perfusion restoration and therefore the severity of tissue damage and functional impairment that ensues following arterial occlusion. Understanding the mechanisms responsible for collateral artery development may provide avenues for therapeutic intervention. Here, we identify a critical requirement for mixed lineage kinase (MLK) – cJun-NH2-terminal kinase (JNK) signaling in vascular morphogenesis and native collateral artery development. We demonstrate that Mlk2-/-Mlk3-/- mice or mice with compound JNK-deficiency in the vascular ...


Cathosis: Cathepsins In Particle-Induced Inflammatory Cell Death: A Dissertation, Gregory M. Orlowski May 2015

Cathosis: Cathepsins In Particle-Induced Inflammatory Cell Death: A Dissertation, Gregory M. Orlowski

GSBS Dissertations and Theses

Sterile particles underlie the pathogenesis of numerous inflammatory diseases. These diseases can often become chronic and debilitating. Moreover, they are common, and include silicosis (silica), asbestosis (asbestos), gout (monosodium urate), atherosclerosis (cholesterol crystals), and Alzeihmer’s disease (amyloid Aβ). Central to the pathology of these diseases is a repeating cycle of particle-induced cell death and inflammation. Macrophages are the key cellular mediators thought to drive this process, as they are especially sensitive to particle-induced cell death and they are also the dominant producers of the cytokine responsible for much of this inflammation, IL-1β. In response to cytokines or microbial cues ...


Function And Regulation Of The Α6 Integrins In Mammary Epithelial Biology And Breast Cancer: A Dissertation, Cheng Chang Feb 2015

Function And Regulation Of The Α6 Integrins In Mammary Epithelial Biology And Breast Cancer: A Dissertation, Cheng Chang

GSBS Dissertations and Theses

Integrins have the ability to impact major aspects of epithelial biology including adhesion, migration, invasion, signaling and differentiation, as well as the formation and progression of cancer (Hynes 2002; Srichai and Zent 2010; Anderson et al. 2014). This thesis focuses on how integrins are regulated and function in the context of mammary epithelial biology and breast cancer with a specific focus on the α6 integrin heterodimers (α6β1 and α6β4). These integrins function primarily as receptors for the laminin family of extracellular matrix (ECM) proteins and they have been implicated in mammary gland biology and breast cancer (Friedrichs et al. 1995 ...


Calcium Dependent Regulatory Mechanism In Wolfram Syndrome: A Dissertation, Simin Lu Feb 2015

Calcium Dependent Regulatory Mechanism In Wolfram Syndrome: A Dissertation, Simin Lu

GSBS Dissertations and Theses

Wolfram syndrome is a genetic disorder characterized by diabetes and neurodegeneration. Two causative genes have been identified so far, WFS1 and WFS2, both encoding endoplasmic reticulum (ER) localized transmembrane proteins. Since WFS1 is involved in the ER stress pathway, Wolfram syndrome is considered an ER disease. Despite the underlying importance of ER dysfunction in Wolfram syndrome, the molecular mechanism linking ER to the death of β cells and neurons has not been elucidated.

The endoplasmic reticulum (ER) is an organelle that forms a network of enclosed sacs and tubes that connect the nuclear membrane and other organelles including Golgi and ...


Autophagy-Independent Role For Beclin 1 In The Regulation Of Growth Factor Receptor Signaling: A Dissertation, Rasika Rohatgi Jan 2015

Autophagy-Independent Role For Beclin 1 In The Regulation Of Growth Factor Receptor Signaling: A Dissertation, Rasika Rohatgi

GSBS Dissertations and Theses

Beclin 1 is a haplo-insufficient tumor suppressor that is decreased in many human tumors. The function of Beclin 1 in cancer has been attributed primarily to its role in the degradative process of autophagy. However, the role of autophagy itself in tumorigenesis is context-dependent and can be both preventive and promoting. Due to its dual function in cancer a better understanding of this process is necessary to develop potential novel cancer therapies. To gain insight into the role of autophagy in breast carcinoma, I analyzed the autophagydependency of different subtypes of breast cancer. My results implicate that triple-negative breast carcinoma ...


Runx Expression In Normal And Osteoarthritic Cartilage: Possible Functions Of Runx Proteins In Chondrocytes: A Dissertation, Kimberly T. Leblanc Feb 2013

Runx Expression In Normal And Osteoarthritic Cartilage: Possible Functions Of Runx Proteins In Chondrocytes: A Dissertation, Kimberly T. Leblanc

GSBS Dissertations and Theses

The Runx family of transcription factors supports cell fate determination, cell cycle regulation, global protein synthesis control, and genetic as well as epigenetic regulation of target genes. Runx1, which is essential for hematopoiesis; Runx2, which is required for osteoblast differentiation; and Runx3, which is involved in neurologic and gut development; are expressed in the growth plate during chondrocyte maturation, and in the chondrocytes of permanent cartilage structures. While Runx2 is known to control genes that contribute to chondrocyte hypertrophy, the functions of Runx1 and Runx3 during chondrogenesis and in cartilage tissue have been less well studied.

The goals of this ...


Mitochondrial Dysfunction And Akt Isoform-Specific Regulation In 3t3-L1 Adipocytes: A Dissertation, Xiarong Shi Sep 2010

Mitochondrial Dysfunction And Akt Isoform-Specific Regulation In 3t3-L1 Adipocytes: A Dissertation, Xiarong Shi

GSBS Dissertations and Theses

Excess food consumption and/or lack of exercise have dramatically contributed to the prevalence of overweight (BMI≥25) and obesity (BMI≥30) in modern society. The obesity epidemic has been linked to the rise in type 2 diabetes. In recent years, evidence has pointed to a close association between mitochondrial dysfunction in white adipose tissue (WAT) and insulin resistance, a key feature of type 2 diabetes. In order to dissect the cause and effect relationship between WAT mitochondrial dysfunction and insulin resistance, we established an in vitro cell line system to investigate this issue. We artificially introduced mitochondrial dysfunction in ...


Functional Analysis Of Ing1 And Ing4 In Cell Growth And Tumorigenesis: A Dissertation, Andrew H. Coles May 2008

Functional Analysis Of Ing1 And Ing4 In Cell Growth And Tumorigenesis: A Dissertation, Andrew H. Coles

GSBS Dissertations and Theses

The five member Inhibitor of Growth (ING) gene family has been proposed to participate in the regulation of cell growth, DNA repair, inflammation, chromatin remodeling, and tumor suppression. All ING proteins contain a PHD motif implicated in binding to methylated histones and are components of large chromatin remodeling complexes containing histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes, suggesting a role for ING proteins in regulating gene transcription. Additionally, forced overexpression studies performed in vitro have indicated that several ING proteins can interact with the p53 tumor suppressor protein and/or the NF-кB protein complex. Since these two proteins play ...