Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Cell Biology

Mutations Affecting A Putative Mutla Endonuclease Motif Impact Multiple Dna Mismatch Repair Functions, Naz Erdeniz, Megan Nguyen, Suzanne M. Deschênes, R. Michael Liskay Oct 2007

Mutations Affecting A Putative Mutla Endonuclease Motif Impact Multiple Dna Mismatch Repair Functions, Naz Erdeniz, Megan Nguyen, Suzanne M. Deschênes, R. Michael Liskay

Biology Faculty Publications

Mutations in DNA mismatch repair (MMR) lead to increased mutation rates and higher recombination between similar, but not identical sequences, as well as resistance to certain DNA methylating agents. Recently, a component of human MMR machinery, MutLα, has been shown to display a latent endonuclease activity. The endonuclease active site appears to include a conserved motif, DQHA(X)2E(X)4E, within the COOH-terminus of human PMS2. Substitution of the glutamic acid residue (E705) abolished the endonuclease activity and mismatch-dependent excision in vitro. Previously, we showed that the PMS2-E705K mutation and the corresponding mutation in Saccharomyces cerevisiae ...


Myod Synergizes With The E-Protein Heb Beta To Induce Myogenic Differentiation, Maura H. Parker, Robert L.S. Perry, Melanie C. Fauteux, Charlotte A. Berkes, Michael A. Rudnicki Aug 2006

Myod Synergizes With The E-Protein Heb Beta To Induce Myogenic Differentiation, Maura H. Parker, Robert L.S. Perry, Melanie C. Fauteux, Charlotte A. Berkes, Michael A. Rudnicki

Biology Faculty Publications

The MyoD family of basic helix-loop-helix transcription factors function as heterodimers with members of the E-protein family to induce myogenic gene activation. The E-protein HEB is alternatively spliced to generate alpha and beta isoforms. While the function of these molecules has been studied in other cell types, questions persist regarding the molecular functions of HEB proteins in skeletal muscle. Our data demonstrate that HEB alpha expression remains unchanged in both myoblasts and myotubes, whereas HEB beta is upregulated during the early phases of terminal differentiation. Upon induction of differentiation, a MyoD-HEB beta complex bound the E1 E-box of the myogenin ...


Myod Targets Chromatin Remodeling Complexes To The Myogenin Locus Prior To Forming A Stable Dna-Bound Complex, Ivana L. De La Serna, Yasuyuki Ohkawa, Charlotte A. Berkes, Donald A. Bergstrom, Caroline S. Dacwag, Stephen J. Tapscott, Anthony N. Imbalzano May 2005

Myod Targets Chromatin Remodeling Complexes To The Myogenin Locus Prior To Forming A Stable Dna-Bound Complex, Ivana L. De La Serna, Yasuyuki Ohkawa, Charlotte A. Berkes, Donald A. Bergstrom, Caroline S. Dacwag, Stephen J. Tapscott, Anthony N. Imbalzano

Biology Faculty Publications

The activation of muscle-specific gene expression requires the coordinated action of muscle regulatory proteins and chromatin-remodeling enzymes. Microarray analysis performed in the presence or absence of a dominant-negative BRG1 ATPase demonstrated that approximately one-third of MyoD-induced genes were highly dependent on SWI/SNF enzymes. To understand the mechanism of activation, we performed chromatin immunoprecipitations analyzing the myogenin promoter. We found that H4 hyperacetylation preceded Brg1 binding in a MyoD-dependent manner but that MyoD binding occurred subsequent to H4 modification and Brg1 interaction. In the absence of functional SWI/SNF enzymes, muscle regulatory proteins did not bind to the myogenin promoter ...


Intracellular Transport, Assembly, And Degradation Of Wild-Type And Disease-Linked Mutant Gap Junction Proteins, Judy K. Vanslyke, Suzanne M. Deschênes, Linda S. Musil Jun 2000

Intracellular Transport, Assembly, And Degradation Of Wild-Type And Disease-Linked Mutant Gap Junction Proteins, Judy K. Vanslyke, Suzanne M. Deschênes, Linda S. Musil

Biology Faculty Publications

More than 130 different mutations in the gap junction integral plasma membrane protein connexin32 (Cx32) have been linked to the human peripheral neuropathy X-linked Charcot–Marie–Tooth disease (CMTX). How these various mutants are processed by the cell and the mechanism(s) by which they cause CMTX are unknown. To address these issues, we have studied the intracellular transport, assembly, and degradation of three CMTX-linked Cx32 mutants stably expressed in PC12 cells. Each mutant had a distinct fate: E208K Cx32 appeared to be retained in the endoplasmic reticulum (ER), whereas both the E186K and R142W mutants were transported to perinuclear ...