Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology Faculty Publications

Genetics

Gene expression

Articles 1 - 2 of 2

Full-Text Articles in Cell Biology

Real-Time Quantitative Pcr To Demonstrate Gene Expression In An Undergraduate Lab, Abijeet Singh Mehta, Amit Singh Jan 2017

Real-Time Quantitative Pcr To Demonstrate Gene Expression In An Undergraduate Lab, Abijeet Singh Mehta, Amit Singh

Biology Faculty Publications

The objective of this teaching note is to develop a laboratory exercise, which allows students to get a hands-on experience of a molecular biology technique to analyze gene expression. The short duration of the biology laboratory for an undergraduate curriculum is the biggest challenge with the development of new labs. An important part of cell biology or molecular biology undergraduate curriculum is to study gene expression. There are many labs to study gene expression in qualitative manner. The commonly used reporter gene expression studies are primarily qualitative. However, there is no hands-on experience exercise to quantitatively determine gene expression. Therefore ...


Myod Targets Chromatin Remodeling Complexes To The Myogenin Locus Prior To Forming A Stable Dna-Bound Complex, Ivana L. De La Serna, Yasuyuki Ohkawa, Charlotte A. Berkes, Donald A. Bergstrom, Caroline S. Dacwag, Stephen J. Tapscott, Anthony N. Imbalzano May 2005

Myod Targets Chromatin Remodeling Complexes To The Myogenin Locus Prior To Forming A Stable Dna-Bound Complex, Ivana L. De La Serna, Yasuyuki Ohkawa, Charlotte A. Berkes, Donald A. Bergstrom, Caroline S. Dacwag, Stephen J. Tapscott, Anthony N. Imbalzano

Biology Faculty Publications

The activation of muscle-specific gene expression requires the coordinated action of muscle regulatory proteins and chromatin-remodeling enzymes. Microarray analysis performed in the presence or absence of a dominant-negative BRG1 ATPase demonstrated that approximately one-third of MyoD-induced genes were highly dependent on SWI/SNF enzymes. To understand the mechanism of activation, we performed chromatin immunoprecipitations analyzing the myogenin promoter. We found that H4 hyperacetylation preceded Brg1 binding in a MyoD-dependent manner but that MyoD binding occurred subsequent to H4 modification and Brg1 interaction. In the absence of functional SWI/SNF enzymes, muscle regulatory proteins did not bind to the myogenin promoter ...