Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mice

2008

Articles 1 - 2 of 2

Full-Text Articles in Cell Biology

Supervillin Modulation Of Focal Adhesions Involving Trip6/Zrp-1, Norio Takizawa, Tara C. Smith, Thomas Nebl, Jessica Lynn Crowley, Stephen J. Palmieri, Lawrence M. Lifshitz, Anka G. Ehrhardt, Laura M. Hoffman, Mary C. Beckerle, Elizabeth J. Luna Mar 2008

Supervillin Modulation Of Focal Adhesions Involving Trip6/Zrp-1, Norio Takizawa, Tara C. Smith, Thomas Nebl, Jessica Lynn Crowley, Stephen J. Palmieri, Lawrence M. Lifshitz, Anka G. Ehrhardt, Laura M. Hoffman, Mary C. Beckerle, Elizabeth J. Luna

Elizabeth J. Luna

Cell-substrate contacts, called focal adhesions (FAs), are dynamic in rapidly moving cells. We show that supervillin (SV)--a peripheral membrane protein that binds myosin II and F-actin in such cells--negatively regulates stress fibers, FAs, and cell-substrate adhesion. The major FA regulatory sequence within SV (SV342-571) binds to the LIM domains of two proteins in the zyxin family, thyroid receptor-interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP), but not to zyxin itself. SV and TRIP6 colocalize within large FAs, where TRIP6 may help recruit SV. RNAi-mediated decreases in either protein increase cell adhesion to fibronectin. TRIP6 partially rescues SV effects on ...


Archvillin, A Muscle-Specific Isoform Of Supervillin, Is An Early Expressed Component Of The Costameric Membrane Skeleton, Sang W. Oh, Robert K. Pope, Kelly P. Smith, Jessica Lynn Crowley, Thomas Nebl, Jeanne B. Lawrence, Elizabeth J. Luna Mar 2008

Archvillin, A Muscle-Specific Isoform Of Supervillin, Is An Early Expressed Component Of The Costameric Membrane Skeleton, Sang W. Oh, Robert K. Pope, Kelly P. Smith, Jessica Lynn Crowley, Thomas Nebl, Jeanne B. Lawrence, Elizabeth J. Luna

Elizabeth J. Luna

The membrane skeleton protein supervillin binds tightly to both F-actin and membranes and can potentiate androgen receptor activity in non-muscle cells. We report that muscle, which constitutes the principal tissue source for supervillin sequences, contains a approximately 250 kDa isoform of supervillin that localizes within nuclei and with dystrophin at costameres, regions of F-actin membrane attachment in skeletal muscle. The gene encoding this protein, 'archvillin' (Latin, archi; Greek, archos; 'principal' or 'chief'), contains an evolutionarily conserved, muscle-specific 5' leader sequence. Archvillin cDNAs also contain four exons that encode approximately 47 kDa of additional muscle-specific protein sequence in the form of ...