Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Animals

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 51

Full-Text Articles in Cell Biology

Histone Citrullination Represses Mirna Expression Resulting In Increased Oncogene Mrnas In Somatolactotrope Cells., Stanley B Devore, Coleman H. Young, Guangyuan Li, Anitha Sundararajan, Thiruvarangan Ramaraj, Joann Mudge, Faye Schilkey, Aaron Muth, Paul R. Thompson, Brian D. Cherrington Sep 2018

Histone Citrullination Represses Mirna Expression Resulting In Increased Oncogene Mrnas In Somatolactotrope Cells., Stanley B Devore, Coleman H. Young, Guangyuan Li, Anitha Sundararajan, Thiruvarangan Ramaraj, Joann Mudge, Faye Schilkey, Aaron Muth, Paul R. Thompson, Brian D. Cherrington

University of Massachusetts Medical School Publications

Peptidylarginine deiminase (PAD) enzymes convert histone arginine residues into citrulline to modulate chromatin organization and gene expression. Although PADs are expressed in anterior pituitary gland cells, their functional role and expression in pituitary adenomas is unknown. To begin to address these questions, we first examined normal human pituitaries and pituitary adenomas and found that PAD2, PAD4 and citrullinated histones are highest in prolactinomas and somatoprolactinomas. In the somatoprolactinoma-derived GH3 cell line, PADs citrullinate histone H3, which is attenuated by a pan-PAD inhibitor. RNA-sequencing and ChIP studies show that the expression of microRNAs let-7c-2, miR-23b and miR-29c is suppressed by histone ...


Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie Oct 2017

Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie

Molecular and Cellular Biochemistry Faculty Publications

Rationale: Cancer stem cells (CSCs) have been implicated as the seeds of therapeutic resistance and metastasis, due to their unique abilities of self-renew, wide differentiation potentials and resistance to most conventional therapies. It is a proactive strategy for cancer therapy to eradicate CSCs. Methods: Tumor tissue-derived breast CSCs (BCSC), including XM322 and XM607, were isolated by fluorescence-activated cell sorting (FACS); while cell line-derived BCSC, including MDA-MB-231.SC and MCF-7.SC, were purified by magnetic-activated cell sorting (MACS). Analyses of microRNA and mRNA expression array profiles were performed in multiple breast cell lines. The mentioned nanoparticles were constructed following the standard ...


A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar Aug 2017

A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar

Radiation Medicine Faculty Publications

Primary tumors are often heterogeneous, composed of therapy-sensitive and emerging therapy-resistant cancer cells. Interestingly, treatment of therapy-sensitive tumors in heterogeneous tumor microenvironments results in apoptosis of therapy-resistant tumors. In this study, we identify a prostate apoptosis response-4 (Par-4) amino-terminal fragment (PAF) that is released by diverse therapy-sensitive cancer cells following therapy-induced caspase cleavage of the tumor suppressor Par-4 protein. PAF caused apoptosis in cancer cells resistant to therapy and inhibited tumor growth. A VASA segment of Par-4 mediated its binding and degradation by the ubiquitin ligase Fbxo45, resulting in loss of Par-4 proapoptotic function. Conversely, PAF, which contains this VASA ...


The Glia Response After Peripheral Nerve Injury: A Comparison Between Schwann Cells And Olfactory Ensheathing Cells And Their Uses For Neural Regenerative Therapies, Matthew J Barton, James St John, Alison Wright, Jenny Ekberg Jun 2017

The Glia Response After Peripheral Nerve Injury: A Comparison Between Schwann Cells And Olfactory Ensheathing Cells And Their Uses For Neural Regenerative Therapies, Matthew J Barton, James St John, Alison Wright, Jenny Ekberg

Jenny Ekberg

The peripheral nervous system (PNS) exhibits a much larger capacity for regeneration than the central nervous system (CNS). One reason for this difference is the difference in glial cell types between the two systems. PNS glia respond rapidly to nerve injury by clearing debris from the injury site, supplying essential growth factors and providing structural support; all of which enhances neuronal regeneration. Thus, transplantation of glial cells from the PNS is a very promising therapy for injuries to both the PNS and the CNS. There are two key types of PNS glia: olfactory ensheathing cells (OECs), which populate the olfactory ...


Relb Expression Determines The Differential Effects Of Ascorbic Acid In Normal And Cancer Cells, Xiaowei Wei, Yong Xu, Fang Fang Xu, Luksana Chaiswing, David M. Schnell, Teresa Noel, Chi Wang, Jinfei Chen, Daret K. St. Clair, William H. St. Clair Mar 2017

Relb Expression Determines The Differential Effects Of Ascorbic Acid In Normal And Cancer Cells, Xiaowei Wei, Yong Xu, Fang Fang Xu, Luksana Chaiswing, David M. Schnell, Teresa Noel, Chi Wang, Jinfei Chen, Daret K. St. Clair, William H. St. Clair

Toxicology and Cancer Biology Faculty Publications

Cancer cells typically experience higher oxidative stress than normal cells, such that elevating pro-oxidant levels can trigger cancer cell death. Although pre-exposure to mild oxidative agents will sensitize cancer cells to radiation, this pre-exposure may also activate the adaptive stress defense system in normal cells. Ascorbic acid is a prototype redox modulator that when infused intravenously appears to kill cancers without injury to normal tissues; however, the mechanisms involved remain elusive. In this study, we show how ascorbic acid kills cancer cells and sensitizes prostate cancer to radiation therapy while also conferring protection upon normal prostate epithelial cells against radiation-induced ...


Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao Oct 2016

Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao

Markey Cancer Center Faculty Publications

The proper establishment of epithelial polarity allows cells to sense and respond to signals that arise from the microenvironment in a spatiotemporally controlled manner. Atypical PKCs (aPKCs) are implicated as key regulators of epithelial polarity. However, the molecular mechanism underlying the negative regulation of aPKCs remains largely unknown. In this study, we demonstrated that PH domain leucine-rich repeat protein phosphatase (PHLPP), a novel family of Ser/Thr protein phosphatases, plays an important role in regulating epithelial polarity by controlling the phosphorylation of both aPKC isoforms. Altered expression of PHLPP1 or PHLPP2 disrupted polarization of Caco2 cells grown in 3D cell ...


Expression And Function Of Pannexins In The Inner Ear And Hearing, Hong-Bo Zhao May 2016

Expression And Function Of Pannexins In The Inner Ear And Hearing, Hong-Bo Zhao

Otolaryngology--Head & Neck Surgery Faculty Publications

Pannexin (Panx) is a gene family encoding gap junction proteins in vertebrates. So far, three isoforms (Panx1, 2 and 3) have been identified. All of three Panx isoforms express in the cochlea with distinct expression patterns. Panx1 expresses in the cochlea extensively, including the spiral limbus, the organ of Corti, and the cochlear lateral wall, whereas Panx2 and Panx3 restrict to the basal cells of the stria vascularis in the lateral wall and the cochlear bony structure, respectively. However, there is no pannexin expression in auditory sensory hair cells. Recent studies demonstrated that like connexin gap junction gene, Panx1 deficiency ...


Ampa-Kainate Receptor Inhibition Promotes Neurologic Recovery In Premature Rabbits With Intraventricular Hemorrhage, Preeti Dohare, Muhammad T. Zia, Ehsan Ahmed, Asad Ahmed, Vivek Yadala, Praveen Ballabh Mar 2016

Ampa-Kainate Receptor Inhibition Promotes Neurologic Recovery In Premature Rabbits With Intraventricular Hemorrhage, Preeti Dohare, Muhammad T. Zia, Ehsan Ahmed, Asad Ahmed, Vivek Yadala, Praveen Ballabh

NYMC Faculty Publications

Intraventricular hemorrhage (IVH) in preterm infants leads to cerebral inflammation, reduced myelination of the white matter, and neurological deficits. No therapeutic strategy exists against the IVH-induced white matter injury. AMPA-kainate receptor induced excitotoxicity contributes to oligodendrocyte precursor cell (OPC) damage and hypomyelination in both neonatal and adult models of brain injury. Here, we hypothesized that IVH damages white matter via AMPA receptor activation, and that AMPA-kainate receptor inhibition suppresses inflammation and restores OPC maturation, myelination, and neurologic recovery in preterm newborns with IVH. We tested these hypotheses in a rabbit model of glycerol-induced IVH and evaluated the expression of AMPA ...


P-Rex1 Promotes Resistance To Vegf/Vegfr-Targeted Therapy In Prostate Cancer, Hira Lal Goel, Bryan Pursell, Leonard D. Shultz, Dale L. Greiner, Rolf A Brekken, Craig W. Vander Kooi, Arthur M. Mercurio Mar 2016

P-Rex1 Promotes Resistance To Vegf/Vegfr-Targeted Therapy In Prostate Cancer, Hira Lal Goel, Bryan Pursell, Leonard D. Shultz, Dale L. Greiner, Rolf A Brekken, Craig W. Vander Kooi, Arthur M. Mercurio

Molecular and Cellular Biochemistry Faculty Publications

Autocrine VEGF signaling is critical for sustaining prostate and other cancer stem cells (CSCs), and it is a potential therapeutic target, but we observed that CSCs isolated from prostate tumors are resistant to anti-VEGF (bevacizumab) and anti-VEGFR (sunitinib) therapy. Intriguingly, resistance is mediated by VEGF/neuropilin signaling, which is not inhibited by bevacizumab and sunitinib, and it involves the induction of P-Rex1, a Rac GEF, and consequent Rac1-mediated ERK activation. This induction of P-Rex1 is dependent on Myc. CSCs isolated from the PTENpc−/− transgenic model of prostate cancer exhibit Rac1-dependent resistance to bevacizumab. Rac1 inhibition or P-Rex1 downregulation increases ...


Measurement Of Elastic Modulus Of Collagen Type I Single Fiber, Pavel Dutov, Olga Antipova, Sameer Varma, Joseph P R O Orgel, Jay D Schieber Jan 2016

Measurement Of Elastic Modulus Of Collagen Type I Single Fiber, Pavel Dutov, Olga Antipova, Sameer Varma, Joseph P R O Orgel, Jay D Schieber

Cell Biology, Microbiology, and Molecular Biology Faculty Publications

Collagen fibers are the main components of the extra cellular matrix and the primary contributors to the mechanical properties of tissues. Here we report a novel approach to measure the longitudinal component of the elastic moduli of biological fibers under conditions close to those found in vivo and apply it to type I collagen from rat tail tendon. This approach combines optical tweezers, atomic force microscopy, and exploits Euler-Bernoulli elasticity theory for data analysis. This approach also avoids drying for measurements or visualization, since samples are freshly extracted. Importantly, strains are kept below 0.5%, which appear consistent with the ...


Hyaluronidase And Hyaluronan Oligosaccharides Promote Neurological Recovery After Intraventricular Hemorrhage, Govindaiah Vinukonda, Preeti Dohare, Arslan Arshad, Muhammad T. Zia, Sanjeet Panda, Ritesh Korumilli, Praveen Ballabh Jan 2016

Hyaluronidase And Hyaluronan Oligosaccharides Promote Neurological Recovery After Intraventricular Hemorrhage, Govindaiah Vinukonda, Preeti Dohare, Arslan Arshad, Muhammad T. Zia, Sanjeet Panda, Ritesh Korumilli, Praveen Ballabh

NYMC Faculty Publications

Intraventricular hemorrhage (IVH) in premature infants results in inflammation, arrested oligodendrocyte progenitor cell (OPC) maturation, and reduced myelination of the white matter. Hyaluronan (HA) inhibits OPC maturation and complexes with the heavy chain (HC) of glycoprotein inter-α-inhibitor to form pathological HA (HC-HA complex), which exacerbates inflammation. Therefore, we hypothesized that IVH would result in accumulation of HA, and that either degradation of HA by hyaluronidase treatment or elimination of HCs from pathological HA by HA oligosaccharide administration would restore OPC maturation, myelination, and neurological function in survivors with IVH. To test these hypotheses, we used the preterm rabbit model of ...


A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz Aug 2015

A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz

Open Dartmouth: Faculty Open Access Scholarship

Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction ...


The Nuclear Factor Of Activated T Cells (Nfat) Transcription Factor Nfatp (Nfatc2) Is A Repressor Of Chondrogenesis, Ann M. Ranger, Louis C. Gerstenfeld, Jinxi Wang, Tamiyo Kon, Hyunsu Bae, Ellen M. Gravallese, Melvin J. Glimcher, Laurie H. Glimcher Apr 2015

The Nuclear Factor Of Activated T Cells (Nfat) Transcription Factor Nfatp (Nfatc2) Is A Repressor Of Chondrogenesis, Ann M. Ranger, Louis C. Gerstenfeld, Jinxi Wang, Tamiyo Kon, Hyunsu Bae, Ellen M. Gravallese, Melvin J. Glimcher, Laurie H. Glimcher

Ellen M. Gravallese

Nuclear factor of activated T cells (NFAT) transcription factors regulate gene expression in lymphocytes and control cardiac valve formation. Here, we report that NFATp regulates chondrogenesis in the adult animal. In mice lacking NFATp, resident cells in the extraarticular connective tissues spontaneously differentiate to cartilage. These cartilage cells progressively differentiate and the tissue undergoes endochondral ossification, recapitulating the development of endochondral bone. Proliferation of already existing articular cartilage cells also occurs in some older animals. At both sites, neoplastic changes in the cartilage cells occur. Consistent with these data, NFATp expression is regulated in mesenchymal stem cells induced to differentiate ...


A Lipopolysaccharide-Induced Dna-Binding Protein For A Class Ii Gene In B Cells Is Distinct From Nf-Kappa B, Ellen M. Gravallese, Mark R. Boothby, Cynthia M. Smas, Laurie H. Glimcher Apr 2015

A Lipopolysaccharide-Induced Dna-Binding Protein For A Class Ii Gene In B Cells Is Distinct From Nf-Kappa B, Ellen M. Gravallese, Mark R. Boothby, Cynthia M. Smas, Laurie H. Glimcher

Ellen M. Gravallese

Class II (Ia) major histocompatibility complex molecules are cell surface proteins normally expressed by a limited subset of cells of the immune system. These molecules regulate the activation of T cells and are required for the presentation of antigens and the initiation of immune responses. The expression of Ia in B cells is determined by both the developmental stage of the B cell and by certain external stimuli. It has been demonstrated previously that treatment of B cells with lipopolysaccharide (LPS) results in increased surface expression of Ia protein. However, we have confirmed that LPS treatment results in a significant ...


Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives Nov 2014

Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives

David Grünwald

The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3sigma) to be similarly regulated by Nup98. The ...


Id2 Complexes With The Snag Domain Of Snai1 Inhibiting Snai1-Mediated Repression Of Integrin Beta4, Cheng Chang, Xiaofang Yang, Bryan Pursell, Arthur M. Mercurio Nov 2014

Id2 Complexes With The Snag Domain Of Snai1 Inhibiting Snai1-Mediated Repression Of Integrin Beta4, Cheng Chang, Xiaofang Yang, Bryan Pursell, Arthur M. Mercurio

Arthur M. Mercurio

The epithelial-mesenchymal transition (EMT) is a fundamental process that underlies development and cancer. Although the EMT involves alterations in the expression of specific integrins that mediate stable adhesion to the basement membrane, such as alpha6beta4, the mechanisms involved are poorly understood. Here, we report that Snai1 inhibits beta4 transcription by increasing repressive histone modification (trimethylation of histone H3 at K27 [H3K27Me3]). Surprisingly, Snai1 is expressed and localized in the nucleus in epithelial cells, but it does not repress beta4. We resolved this paradox by discovering that Id2 complexes with the SNAG domain of Snai1 on the beta4 promoter and constrains ...


Sting-Irf3 Pathway Links Endoplasmic Reticulum Stress With Hepatocyte Apoptosis In Early Alcoholic Liver Disease, Jan Petrasek, Arvin Iracheta-Vellve, Timea Csak, Abhishek Satishchandran, Karen Kodys, Evelyn A. Kurt-Jones, Katherine A. Fitzgerald, Gyongyi Szabo Sep 2014

Sting-Irf3 Pathway Links Endoplasmic Reticulum Stress With Hepatocyte Apoptosis In Early Alcoholic Liver Disease, Jan Petrasek, Arvin Iracheta-Vellve, Timea Csak, Abhishek Satishchandran, Karen Kodys, Evelyn A. Kurt-Jones, Katherine A. Fitzgerald, Gyongyi Szabo

Katherine A. Fitzgerald

Emerging evidence suggests that innate immunity drives alcoholic liver disease (ALD) and that the interferon regulatory factor 3 (IRF3),a transcription factor regulating innate immune responses, is indispensable for the development of ALD. Here we report that IRF3 mediates ALD via linking endoplasmic reticulum (ER) stress with apoptotic signaling in hepatocytes. We found that ethanol induced ER stress and triggered the association of IRF3 with the ER adaptor, stimulator of interferon genes (STING), as well as subsequent phosphorylation of IRF3. Activated IRF3 associated with the proapoptotic molecule Bax [B-cell lymphoma 2 (Bcl2)-associated X protein] and contributed to hepatocyte apoptosis ...


Sting-Irf3 Pathway Links Endoplasmic Reticulum Stress With Hepatocyte Apoptosis In Early Alcoholic Liver Disease, Jan Petrasek, Arvin Iracheta-Vellve, Timea Csak, Abhishek Satishchandran, Karen Kodys, Evelyn A. Kurt-Jones, Katherine A. Fitzgerald, Gyongyi Szabo Sep 2014

Sting-Irf3 Pathway Links Endoplasmic Reticulum Stress With Hepatocyte Apoptosis In Early Alcoholic Liver Disease, Jan Petrasek, Arvin Iracheta-Vellve, Timea Csak, Abhishek Satishchandran, Karen Kodys, Evelyn A. Kurt-Jones, Katherine A. Fitzgerald, Gyongyi Szabo

Gyongyi Szabo

Emerging evidence suggests that innate immunity drives alcoholic liver disease (ALD) and that the interferon regulatory factor 3 (IRF3),a transcription factor regulating innate immune responses, is indispensable for the development of ALD. Here we report that IRF3 mediates ALD via linking endoplasmic reticulum (ER) stress with apoptotic signaling in hepatocytes. We found that ethanol induced ER stress and triggered the association of IRF3 with the ER adaptor, stimulator of interferon genes (STING), as well as subsequent phosphorylation of IRF3. Activated IRF3 associated with the proapoptotic molecule Bax [B-cell lymphoma 2 (Bcl2)-associated X protein] and contributed to hepatocyte apoptosis ...


Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok Jan 2014

Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok

Bioelectrics Publications

BACKGROUND: Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enable the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy.

METHODS: Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are ...


Abnormal Trafficking Of Endogenously Expressed Bmpr2 Mutant Allelic Products In Patients With Heritable Pulmonary Arterial Hypertension, Andrea L Frump, Jonathan W. Lowery Ph.D., Rizwan Hamid, Eric D Austin, Mark De Caestecker Jan 2013

Abnormal Trafficking Of Endogenously Expressed Bmpr2 Mutant Allelic Products In Patients With Heritable Pulmonary Arterial Hypertension, Andrea L Frump, Jonathan W. Lowery Ph.D., Rizwan Hamid, Eric D Austin, Mark De Caestecker

Faculty Publications and Research

More than 200 heterozygous mutations in the type 2 BMP receptor gene, BMPR2, have been identified in patients with Heritable Pulmonary Arterial Hypertension (HPAH). More severe clinical outcomes occur in patients with BMPR2 mutations by-passing nonsense-mediated mRNA decay (NMD negative mutations). These comprise 40% of HPAH mutations and are predicted to express BMPR2 mutant products. However expression of endogenous NMD negative BMPR2 mutant products and their effect on protein trafficking and signaling function have never been described. Here, we characterize the expression and trafficking of an HPAH-associated NMD negative BMPR2 mutation that results in an in-frame deletion of BMPR2 EXON2 ...


Endogenous Inhibitor Proteins That Connect Ser/Thr Kinases And Phosphatases In Cell Signaling., Masumi Eto, David L Brautigan Sep 2012

Endogenous Inhibitor Proteins That Connect Ser/Thr Kinases And Phosphatases In Cell Signaling., Masumi Eto, David L Brautigan

Department of Molecular Physiology and Biophysics Faculty Papers

Protein phosphatase activity acts as a primary determinant of the extent and duration of phosphorylation of cellular proteins in response to physiological stimuli. Ser/Thr protein phosphatase-1 (PP1) belongs to the PPP superfamily, and is associated with regulatory subunits that confer substrate specificity, allosteric regulation, and subcellular compartmentalization. In addition, all eukaryotic cells contain multiple heat-stable proteins that originally were thought to inhibit phosphatase catalytic subunits released from the regulatory subunits, as a fail-safe mechanism. However, discovery of C-kinase-activated PP1 inhibitor, Mr of 17 kDa (CPI-17) required fresh thinking about the endogenous inhibitors as specific regulators of particular phosphatase complexes ...


Condensin Ii Promotes The Formation Of Chromosome Territories By Inducing Axial Compaction Of Polyploid Interphase Chromosomes, Christopher R. R. Bauer, Tom A. Hartl, Giovanni Bosco Aug 2012

Condensin Ii Promotes The Formation Of Chromosome Territories By Inducing Axial Compaction Of Polyploid Interphase Chromosomes, Christopher R. R. Bauer, Tom A. Hartl, Giovanni Bosco

Open Dartmouth: Faculty Open Access Scholarship

The eukaryotic nucleus is both spatially and functionally partitioned. This organization contributes to the maintenance, expression, and transmission of genetic information. Though our ability to probe the physical structure of the genome within the nucleus has improved substantially in recent years, relatively little is known about the factors that regulate its organization or the mechanisms through which specific organizational states are achieved. Here, we show that Drosophila melanogaster Condensin II induces axial compaction of interphase chromosomes, globally disrupts interchromosomal interactions, and promotes the dispersal of peri-centric heterochromatin. These Condensin II activities compartmentalize the nucleus into discrete chromosome territories and indicate ...


The Human Phosphotyrosine Signaling Network: Evolution And Hotspots Of Hijacking In Cancer., Lei Li, Chabane Tibiche, Cong Fu, Tomonori Kaneko, Michael F. Moran, Martin Schiller, Shawn Shun-Cheng Li, Edwin Wang Jul 2012

The Human Phosphotyrosine Signaling Network: Evolution And Hotspots Of Hijacking In Cancer., Lei Li, Chabane Tibiche, Cong Fu, Tomonori Kaneko, Michael F. Moran, Martin Schiller, Shawn Shun-Cheng Li, Edwin Wang

Life Sciences Faculty Publications

Phosphotyrosine (pTyr) signaling, which plays a central role in cell-cell and cell-environment interactions, has been considered to be an evolutionary innovation in multicellular metazoans. However, neither the emergence nor the evolution of the human pTyr signaling system is currently understood. Tyrosine kinase (TK) circuits, each of which consists of a TK writer, a kinase substrate, and a related reader, such as Src homology (SH) 2 domains and pTyr-binding (PTB) domains, comprise the core machinery of the pTyr signaling network. In this study, we analyzed the evolutionary trajectories of 583 literature-derived and 50,000 computationally predicted human TK circuits in 19 ...


Septin Filaments Exhibit A Dynamic, Paired Organization That Is Conserved From Yeast To Mammals, Bradley S. Demay, Xiaobo Bai, Louisa Howard, Patricia Occhipinti, Rebecca A. Meseroll, Elias T. Spiliotis, Rudolf Oldenbourg, Amy S. Gladfelter May 2011

Septin Filaments Exhibit A Dynamic, Paired Organization That Is Conserved From Yeast To Mammals, Bradley S. Demay, Xiaobo Bai, Louisa Howard, Patricia Occhipinti, Rebecca A. Meseroll, Elias T. Spiliotis, Rudolf Oldenbourg, Amy S. Gladfelter

Open Dartmouth: Faculty Open Access Scholarship

The septins are conserved, GTP-binding proteins important for cytokinesis, membrane compartmentalization, and exocytosis. However, it is unknown how septins are arranged within higher-order structures in cells. To determine the organization of septins in live cells, we developed a polarized fluorescence microscopy system to monitor the orientation of GFP dipole moments with high spatial and temporal resolution. When GFP was fused to septins, the arrangement of GFP dipoles reflected the underlying septin organization. We demonstrated in a filamentous fungus, a budding yeast, and a mammalian epithelial cell line that septin proteins were organized in an identical highly ordered fashion. Fluorescence anisotropy ...


Pcdp1 Is A Central Apparatus Protein That Binds Ca2+-Calmodulin And Regulates Ciliary Motility, Christen G. Dipetrillo, Elizabeth F. Smith Apr 2010

Pcdp1 Is A Central Apparatus Protein That Binds Ca2+-Calmodulin And Regulates Ciliary Motility, Christen G. Dipetrillo, Elizabeth F. Smith

Open Dartmouth: Faculty Open Access Scholarship

For all motile eukaryotic cilia and flagella, beating is regulated by changes in intraciliary calcium concentration. Although the mechanism for calcium regulation is not understood, numerous studies have shown that calmodulin (CaM) is a key axonemal calcium sensor. Using anti-CaM antibodies and Chlamydomonas reinhardtii axonemal extracts, we precipitated a complex that includes four polypeptides and that specifically interacts with CaM in high [Ca2+]. One of the complex members, FAP221, is an orthologue of mammalian Pcdp1 (primary ciliary dyskinesia protein 1). Both FAP221 and mammalian Pcdp1 specifically bind CaM in high [Ca2+]. Reduced expression of Pcdp1 complex members in ...


Supervillin Slows Cell Spreading By Facilitating Myosin Ii Activation At The Cell Periphery, Norio Takizawa, Reiko Ikebe, Mitsuo Ikebe, Elizabeth J. Luna Jan 2010

Supervillin Slows Cell Spreading By Facilitating Myosin Ii Activation At The Cell Periphery, Norio Takizawa, Reiko Ikebe, Mitsuo Ikebe, Elizabeth J. Luna

Elizabeth J. Luna

During cell migration, myosin II modulates adhesion, cell protrusion and actin organization at the leading edge. We show that an F-actin- and membrane-associated scaffolding protein, called supervillin (SV, p205), binds directly to the subfragment 2 domains of nonmuscle myosin IIA and myosin IIB and to the N-terminus of the long form of myosin light chain kinase (L-MLCK). SV inhibits cell spreading via an MLCK- and myosin II-dependent mechanism. Overexpression of SV reduces the rate of cell spreading, and RNAi-mediated knockdown of endogenous SV increases it. Endogenous and EGFP-tagged SV colocalize with, and enhance the formation of, cortical bundles of F-actin ...


Supervillin Reorganizes The Actin Cytoskeleton And Increases Invadopodial Efficiency, Jessica Lynn Crowley, Tara C. Smith, Zhiyou Fang, Norio Takizawa, Elizabeth J. Luna Jan 2010

Supervillin Reorganizes The Actin Cytoskeleton And Increases Invadopodial Efficiency, Jessica Lynn Crowley, Tara C. Smith, Zhiyou Fang, Norio Takizawa, Elizabeth J. Luna

Elizabeth J. Luna

Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes ...


Mtorc1 Hyperactivity Inhibits Serum Deprivation-Induced Apoptosis Via Increased Hexokinase Ii And Glut1 Expression, Sustained Mcl-1 Expression, And Glycogen Synthase Kinase 3Β Inhibition, Prashanth T. Bhaskar, Veronique Nogueira, Krushna C. Patra, Sang-Min Jeon, Youngkyu Park, R. Brooks Robey, Nissim Hay Sep 2009

Mtorc1 Hyperactivity Inhibits Serum Deprivation-Induced Apoptosis Via Increased Hexokinase Ii And Glut1 Expression, Sustained Mcl-1 Expression, And Glycogen Synthase Kinase 3Β Inhibition, Prashanth T. Bhaskar, Veronique Nogueira, Krushna C. Patra, Sang-Min Jeon, Youngkyu Park, R. Brooks Robey, Nissim Hay

Open Dartmouth: Faculty Open Access Scholarship

The current concept is that Tsc-deficient cells are sensitized to apoptosis due to the inhibition of Akt activity by the negative feedback mechanism induced by the hyperactive mTORC1. Unexpectedly, however, we found that Tsc1/2-deficient cells exhibit increased resistance to serum deprivation-induced apoptosis. mTORC1 hyperactivity contributes to the apoptotic resistance of serum-deprived Tsc1/2-deficient cells in part by increasing the growth factor-independent expression of hexokinase II (HKII) and GLUT1. mTORC1-mediated increase in hypoxia-inducible factor 1α (HIF1α) abundance, which occurs in the absence of serum in normoxic Tsc2-deficient cells, contributes to these changes. Increased HIF1α abundance in these cells is attributed ...


Dictyostelium Discoideum Plasma Membranes Contain An Actin-Nucleating Activity That Requires Ponticulin, An Integral Membrane Glycoprotein, A. Shariff, Elizabeth J. Luna Mar 2008

Dictyostelium Discoideum Plasma Membranes Contain An Actin-Nucleating Activity That Requires Ponticulin, An Integral Membrane Glycoprotein, A. Shariff, Elizabeth J. Luna

Elizabeth J. Luna

In previous equilibrium binding studies, Dictyostelium discoideum plasma membranes have been shown to bind actin and to recruit actin into filaments at the membrane surface. However, little is known about the kinetic pathway(s) through which actin assembles at these, or other, membranes. We have used actin fluorescently labeled with N-(1-pyrenyl)iodoacetamide to examine the kinetics of actin assembly in the presence of D. discoideum plasma membranes. We find that these membranes increase the rate of actin polymerization. The rate of membrane-mediated actin polymerization is linearly dependent on membrane protein concentrations up to 20 micrograms/ml. Nucleation (the association ...


Ponticulin Plays A Role In The Positional Stabilization Of Pseudopods, D. C. Shutt, D. Wessels, K. Wagenknecht, A. Chandrasekhar, Anne L. Hitt, Elizabeth J. Luna, D. R. Soll Mar 2008

Ponticulin Plays A Role In The Positional Stabilization Of Pseudopods, D. C. Shutt, D. Wessels, K. Wagenknecht, A. Chandrasekhar, Anne L. Hitt, Elizabeth J. Luna, D. R. Soll

Elizabeth J. Luna

Ponticulin is a 17-kD glycoprotein that represents a major high affinity link between the plasma membrane and the cortical actin network of Dictyostelium. To assess the role of ponticulin in pseudopod extension and retraction, the motile behavior of two independently generated mutants lacking ponticulin was analyzed using computer-assisted two- and three-dimensional motion analysis systems. More than half of the lateral pseudopods formed off the substratum by ponticulin-minus cells slipped relative to the substratum during extension and retraction. In contrast, all pseudopods formed off the substratum by wild-type cells were positionally fixed in relation to the substratum. Ponticulin-minus cells also formed ...