Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2014

Chemical and Biological Engineering Publications

Genetics Development and Cell Biology

Articles 1 - 2 of 2

Full-Text Articles in Cell Biology

Cellular Contractility And Extracellular Matrix Stiffness Regulate Matrix Metalloproteinase Activity In Pancreatic Cancer Cells, Amanda Haage, Ian C. Schneider Aug 2014

Cellular Contractility And Extracellular Matrix Stiffness Regulate Matrix Metalloproteinase Activity In Pancreatic Cancer Cells, Amanda Haage, Ian C. Schneider

Chemical and Biological Engineering Publications

The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. A pancreatic cancer cell line, Panc-1 cells, up-regulate MMP activities between 3- and 10- fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with ...


The Number Of Lines A Cell Contacts And Cell Contractility Drive The Efficiency Of Contact Guidance, Nicholas R. Romsey, Yue Hou, Laura L. Rodriguez, Ian C. Schneider Mar 2014

The Number Of Lines A Cell Contacts And Cell Contractility Drive The Efficiency Of Contact Guidance, Nicholas R. Romsey, Yue Hou, Laura L. Rodriguez, Ian C. Schneider

Chemical and Biological Engineering Publications

Cell migration is an important biological function that impacts many physiological and pathological processes. Often migration is directed along various densities of aligned fibers of collagen, a process called contact guidance. However, cells adhere to other components in the extracellular matrix, possibly affecting migrational behavior. Additionally, changes in intracellular contractility are well known to affect random migration, but its effect on contact guidance is less known. This study examines differences in directed migration in response to variations in the spacing of collagen, non-specific background adhesion strength and myosin II-mediated contractility. Collagen was microcontact printed onto glass substrates and timelapse live-cell ...