Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Physiology

GSBS Dissertations and Theses

Cell Differentiation

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Cell Biology

Mechanisms Regulating Early Mesendodermal Differentiation Of Human Embryonic Stem Cells: A Dissertation, Jennifer J. Vanoudenhove Jun 2016

Mechanisms Regulating Early Mesendodermal Differentiation Of Human Embryonic Stem Cells: A Dissertation, Jennifer J. Vanoudenhove

GSBS Dissertations and Theses

Key regulatory events take place at very early stages of human embryonic stem cell (hESC) differentiation to accommodate their ability to differentiate into different lineages; this work examines two separate regulatory events.

To investigate precise mechanisms that link alterations in the cell cycle and early differentiation, we examined the initial stages of mesendodermal lineage commitment and observed a cell cycle pause that occurred concurrently with an increase in genes that regulate the G2/M transition, including WEE1. Inhibition of WEE1 prevented the G2 pause. Directed differentiation of hESCs revealed that cells paused during commitment to the endo- and mesodermal, but ...


Roles Of Protein Arginine Methyltransferase 7 And Jumonji Domain-Containing Protein 6 In Adipocyte Differentiation: A Dissertation, Yu-Jie Hu Oct 2015

Roles Of Protein Arginine Methyltransferase 7 And Jumonji Domain-Containing Protein 6 In Adipocyte Differentiation: A Dissertation, Yu-Jie Hu

GSBS Dissertations and Theses

Regulation of gene expression comprises a wide range of mechanisms that control the abundance of gene products in response to environmental and developmental changes. These biological processes can be modulated by posttranslational modifications including arginine methylation. Among the enzymes that catalyze the methylation, protein arginine methyltransferase 7 (PRMT7) is known to modify histones to repress gene expression. Jumonji domain-containing protein 6 (JMJD6) is a putative arginine demethylase that potentially antagonize PRMT7. However, the biological significance of these enzymes is not well understood. This thesis summarizes the investigation of both PRMT7 and JMJD6 in cell culture models for adipocyte differentiation. The ...


Pos-1 Regulation Of Endo-Mesoderm Identity In C. Elegans: A Dissertation, Ahmed M. Elewa Apr 2014

Pos-1 Regulation Of Endo-Mesoderm Identity In C. Elegans: A Dissertation, Ahmed M. Elewa

GSBS Dissertations and Theses

How do embryos develop with such poise from a single zygote to multiple cells with different identities, and yet survive? At the four-cell stage of the C. elegans embryo, only the blastomere EMS adopts the endo-mesoderm identity. This fate requires SKN-1, the master regulator of endoderm and mesoderm differentiation. However, in the absence of the RNA binding protein POS-1, EMS fails to fulfill its fate despite the presence of SKN-1. pos-1(-) embryos die gutless. Conversely, the RNA binding protein MEX-5 prevents ectoderm blastomeres from adopting the endo-mesoderm identity by repressing SKN-1. mex-5(-) embryos die with excess muscle at the expense ...


Role Of Autophagy In Post-Mitotic Midbody Fate And Function: A Dissertation, Tse-Chun Kuo Mar 2013

Role Of Autophagy In Post-Mitotic Midbody Fate And Function: A Dissertation, Tse-Chun Kuo

GSBS Dissertations and Theses

The midbody (MB) is a proteinaceous complex formed between the two daughter cells during cell division and is required for the final cell separation event in late cytokinesis. After cell division, the post-mitotic midbody, or midbody derivative (MBd), can be retained and accumulated in a subpopulation of cancer cells and stem cells, but not in normal diploid differentiated cells. However, the mechanisms by which MBds accumulate and function are unclear. Based on this, I hypothesize that the MBd is degraded by autophagy after cell division in normal diploid differentiated cells, whereas non-differentiated cells have low autophagic ...