Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Cancer Biology

Series

2017

Articles 1 - 30 of 36

Full-Text Articles in Cell Biology

Serine-Dependent Sphingolipid Synthesis Is A Metabolic Liability Of Aneuploid Cells, Sunyoung Hwang, H. Tobias Gustafsson, Ciara O'Sullivan, Gianna Bisceglia, Xinhe Huang, Christian Klose, Andrej Schevchenko, Robert C. Dickson, Paola Cavaliere, Noah Dephoure, Eduardo M. Torres Dec 2017

Serine-Dependent Sphingolipid Synthesis Is A Metabolic Liability Of Aneuploid Cells, Sunyoung Hwang, H. Tobias Gustafsson, Ciara O'Sullivan, Gianna Bisceglia, Xinhe Huang, Christian Klose, Andrej Schevchenko, Robert C. Dickson, Paola Cavaliere, Noah Dephoure, Eduardo M. Torres

University of Massachusetts Medical School Faculty Publications

Aneuploidy disrupts cellular homeostasis. However, the molecular mechanisms underlying the physiological responses and adaptation to aneuploidy are not well understood. Deciphering these mechanisms is important because aneuploidy is associated with diseases, including intellectual disability and cancer. Although tumors and mammalian aneuploid cells, including several cancer cell lines, show altered levels of sphingolipids, the role of sphingolipids in aneuploidy remains unknown. Here, we show that ceramides and long-chain bases, sphingolipid molecules that slow proliferation and promote survival, are increased by aneuploidy. Sphingolipid levels are tightly linked to serine synthesis, and inhibiting either serine or sphingolipid synthesis can specifically impair the fitness ...


Melk Promotes Melanoma Growth By Stimulating The Nf-Kappab Pathway, Radoslav Janostiak, Navin Rauniyar, Tukiet T. Lam, Jianhong Ou, Lihua Julie Zhu, Michael R. Green, Narendra Wajapeyee Dec 2017

Melk Promotes Melanoma Growth By Stimulating The Nf-Kappab Pathway, Radoslav Janostiak, Navin Rauniyar, Tukiet T. Lam, Jianhong Ou, Lihua Julie Zhu, Michael R. Green, Narendra Wajapeyee

Open Access Articles

Melanoma accounts for more than 80% of skin cancer-related deaths, and current therapies provide only short-term benefit to patients. Here, we show in melanoma cells that maternal embryonic leucine zipper kinase (MELK) is transcriptionally upregulated by the MAPK pathway via transcription factor E2F1. MELK knockdown or pharmacological inhibition blocked melanoma growth and enhanced the effectiveness of BRAFV600E inhibitor against melanoma cells. To identify mediators of MELK function, we performed stable isotope labeling with amino acids in cell culture (SILAC) and identified 469 proteins that had downregulated phosphorylation after MELK inhibition. Of these proteins, 139 were previously reported as substrates of ...


The Alpha6beta4 Integrin Promotes Resistance To Ferroptosis, Caitlin W. Brown, John J. Amante, Hira Lal Goel, Arthur M. Mercurio Dec 2017

The Alpha6beta4 Integrin Promotes Resistance To Ferroptosis, Caitlin W. Brown, John J. Amante, Hira Lal Goel, Arthur M. Mercurio

UMass Metabolic Network Publications

Increases in lipid peroxidation can cause ferroptosis, a form of cell death triggered by inhibition of glutathione peroxidase 4 (GPX4), which catalyzes the reduction of lipid peroxides and is a target of ferroptosis inducers, such as erastin. The alpha6beta4 integrin protects adherent epithelial and carcinoma cells from ferroptosis induced by erastin. In addition, extracellular matrix (ECM) detachment is a physiologic trigger of ferroptosis, which is evaded by alpha6beta4. The mechanism that enables alpha6beta4 to evade ferroptosis involves its ability to protect changes in membrane lipids that are proferroptotic. Specifically, alpha6beta4-mediated activation of Src and STAT3 suppresses expression of ACSL4, an ...


Bivalent Epigenetic Control Of Oncofetal Gene Expression In Cancer, Sayyed K. Zaidi, Seth E. Frietze, Jonathan A. Gordon, Jessica L. Heath, Terri Messier, Deli Hong, Joseph R. Boyd, Mingu Kang, Anthony N. Imbalzano, Jane B. Lian, Janet L. Stein, Gary S. Stein Nov 2017

Bivalent Epigenetic Control Of Oncofetal Gene Expression In Cancer, Sayyed K. Zaidi, Seth E. Frietze, Jonathan A. Gordon, Jessica L. Heath, Terri Messier, Deli Hong, Joseph R. Boyd, Mingu Kang, Anthony N. Imbalzano, Jane B. Lian, Janet L. Stein, Gary S. Stein

UMass Metabolic Network Publications

Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency ...


The Role Of Talin2 In Breast Cancer Tumorigenesis And Metastasis, Liqing Li, Xiang Li, Lei Qi, Piotr G. Rychahou, Naser Jafari, Cai Huang Nov 2017

The Role Of Talin2 In Breast Cancer Tumorigenesis And Metastasis, Liqing Li, Xiang Li, Lei Qi, Piotr G. Rychahou, Naser Jafari, Cai Huang

Markey Cancer Center Faculty Publications

Recent studies show that talin2 has a higher affinity to β-integrin tails and is indispensable for traction force generation and cell invasion. However, its roles in cell migration, cancer cell metastasis and tumorigenesis remain to be determined. Here, we used MDA-MB-231 human breast cancer cells as a model to define the roles of talin2 in cell migration, invasion, metastasis and tumorigenesis. We show here that talin2 knockdown (KD) inhibited cell migration and focal adhesion dynamics, a key step in cell migration, and that talin2 knockout (KO) inhibited cell invasion and traction force generation, the latter is crucial for cell invasion ...


Cyclic Peptide Conjugate Of Curcumin And Doxorubicin As An Anticancer Agent, Shaban Darwish, Saghar Mozaffari, Keykavous Parang, Rakesh Tiwari Oct 2017

Cyclic Peptide Conjugate Of Curcumin And Doxorubicin As An Anticancer Agent, Shaban Darwish, Saghar Mozaffari, Keykavous Parang, Rakesh Tiwari

Pharmacy Faculty Articles and Research

The hydrophobicity of curcumin creates hurdle towards its use in the anticancer therapy. Herein, we synthesized a curcumin-doxorubicin conjugated cyclic peptide scaffold to improve the solubility of curcumin and create a conjugate containing two anticancer agents. A solid-phase Fmoc/tBu solid phase methodology was used to synthesize a cell-penetrating nuclear targeting peptide with free thiol and amine groups, which was coupled with the activated doxorubicin (Dox) and curcumin, affording Dox-peptide-curcumin conjugate (DPCC) (10). The antiproliferative activity of the conjugate was evaluated in human leukemia carcinoma cell (CCRF-CEM), human ovarian carcinoma cell (SKOV-3), and normal kidney cell line (LLCPK). Cyclic peptide-doxorubicin ...


Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie Oct 2017

Nanoparticle Delivery Of Mir-34a Eradicates Long-Term-Cultured Breast Cancer Stem Cells Via Targeting C22orf28 Directly, Xiaoti Lin, Weiyu Chen, Fengqin Wei, Binhua P. Zhou, Mien-Chie Hung, Xiaoming Xie

Molecular and Cellular Biochemistry Faculty Publications

Rationale: Cancer stem cells (CSCs) have been implicated as the seeds of therapeutic resistance and metastasis, due to their unique abilities of self-renew, wide differentiation potentials and resistance to most conventional therapies. It is a proactive strategy for cancer therapy to eradicate CSCs. Methods: Tumor tissue-derived breast CSCs (BCSC), including XM322 and XM607, were isolated by fluorescence-activated cell sorting (FACS); while cell line-derived BCSC, including MDA-MB-231.SC and MCF-7.SC, were purified by magnetic-activated cell sorting (MACS). Analyses of microRNA and mRNA expression array profiles were performed in multiple breast cell lines. The mentioned nanoparticles were constructed following the standard ...


A Role For Tau Protein In Maintaining Ribosomal Dna Stability And Cytidine Deaminase-Deficient Cell Survival, Elias Bou Samra, Geraldine Buhagiar-Labarchede, Christelle Machon, Jerome Guitton, Rosine Onclercq-Delic, Michael R. Green, Olivier Alibert, Claude Gazin, Xavier Veaute, Mounira Amor-Gueret Sep 2017

A Role For Tau Protein In Maintaining Ribosomal Dna Stability And Cytidine Deaminase-Deficient Cell Survival, Elias Bou Samra, Geraldine Buhagiar-Labarchede, Christelle Machon, Jerome Guitton, Rosine Onclercq-Delic, Michael R. Green, Olivier Alibert, Claude Gazin, Xavier Veaute, Mounira Amor-Gueret

Open Access Articles

Cells from Bloom's syndrome patients display genome instability due to a defective BLM and the downregulation of cytidine deaminase. Here, we use a genome-wide RNAi-synthetic lethal screen and transcriptomic profiling to identify genes enabling BLM-deficient and/or cytidine deaminase-deficient cells to tolerate constitutive DNA damage and replication stress. We found a synthetic lethal interaction between cytidine deaminase and microtubule-associated protein Tau deficiencies. Tau is overexpressed in cytidine deaminase-deficient cells, and its depletion worsens genome instability, compromising cell survival. Tau is recruited, along with upstream-binding factor, to ribosomal DNA loci. Tau downregulation decreases upstream binding factor recruitment, ribosomal RNA synthesis ...


A Dual Role Of Caspase-8 In Triggering And Sensing Proliferation-Associated Dna Damage, A Key Determinant Of Liver Cancer Development, Yannick Boege, Roger J. Davis, Achim Weber Sep 2017

A Dual Role Of Caspase-8 In Triggering And Sensing Proliferation-Associated Dna Damage, A Key Determinant Of Liver Cancer Development, Yannick Boege, Roger J. Davis, Achim Weber

UMass Metabolic Network Publications

Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in ...


Stabilization Of The Transcription Factors Slug And Twist By The Deubiquitinase Dub3 Is A Key Requirement For Tumor Metastasis, Yiwei Lin, Yu Wang, Qing Shi, Qian Yu, Cuicui Liu, Jing Feng, Jiong Deng, B. Mark Evers, Binhua P. Zhou, Yadi Wu Aug 2017

Stabilization Of The Transcription Factors Slug And Twist By The Deubiquitinase Dub3 Is A Key Requirement For Tumor Metastasis, Yiwei Lin, Yu Wang, Qing Shi, Qian Yu, Cuicui Liu, Jing Feng, Jiong Deng, B. Mark Evers, Binhua P. Zhou, Yadi Wu

Molecular and Cellular Biochemistry Faculty Publications

The Epithelial-mesenchymal transition (EMT) represents a cellular de-differentiation process that provides cells with the increased plasticity required during embryonic development, tissue remodeling, wound healing and metastasis. Slug and Twist are two key EMT transcription factors (EMT-TFs) that are tightly regulated via ubiquitination and degradation. How Slug and Twist escape degradation and become stabilized in cancer cells remains unclear. One plausible mechanism of Slug and Twist stabilization involves removal of ubiquitin by deubiquitinases (DUBs). In this study, we identified Dub3 as a novel DUB for both Slug and Twist. We further found that Dub3 overexpression increased Slug and Twist protein levels ...


Critical Role For Arginase 2 In Obesity-Associated Pancreatic Cancer, Tamara Zaytouni, Pei-Yun Tsai, Daniel S. Hitchcock, Cory D. Dubois, Elizaveta Freinkman, Lin Lin, Vicente Morales-Oyarvide, Patrick J. Lenehan, Brian M. Wolpin, Mari Mino-Kenudson, Eduardo M. Torres, Nicholas Stylopoulos, Clary B. Clish, Nada Y. Kalaany Aug 2017

Critical Role For Arginase 2 In Obesity-Associated Pancreatic Cancer, Tamara Zaytouni, Pei-Yun Tsai, Daniel S. Hitchcock, Cory D. Dubois, Elizaveta Freinkman, Lin Lin, Vicente Morales-Oyarvide, Patrick J. Lenehan, Brian M. Wolpin, Mari Mino-Kenudson, Eduardo M. Torres, Nicholas Stylopoulos, Clary B. Clish, Nada Y. Kalaany

UMass Metabolic Network Publications

Obesity is an established risk factor for pancreatic ductal adenocarcinoma (PDA). Despite recent identification of metabolic alterations in this lethal malignancy, the metabolic dependencies of obesity-associated PDA remain unknown. Here we show that obesity-driven PDA exhibits accelerated growth and a striking transcriptional enrichment for pathways regulating nitrogen metabolism. We find that the mitochondrial form of arginase (ARG2), which hydrolyzes arginine into ornithine and urea, is induced upon obesity, and silencing or loss of ARG2 markedly suppresses PDA. In vivo infusion of (15)N-glutamine in obese mouse models of PDA demonstrates enhanced nitrogen flux into the urea cycle and infusion of ...


Alcohol And Cancer: Mechanisms And Therapies, Anuradha Ratna, Pranoti Mandrekar Aug 2017

Alcohol And Cancer: Mechanisms And Therapies, Anuradha Ratna, Pranoti Mandrekar

Open Access Articles

Several scientific and clinical studies have shown an association between chronic alcohol consumption and the occurrence of cancer in humans. The mechanism for alcohol-induced carcinogenesis has not been fully understood, although plausible events include genotoxic effects of acetaldehyde, cytochrome P450 2E1 (CYP2E1)-mediated generation of reactive oxygen species, aberrant metabolism of folate and retinoids, increased estrogen, and genetic polymorphisms. Here, we summarize the impact of alcohol drinking on the risk of cancer development and potential underlying molecular mechanisms. The interactions between alcohol abuse, anti-tumor immune response, tumor growth, and metastasis are complex. However, multiple studies have linked the immunosuppressive effects ...


A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar Aug 2017

A Naturally Generated Decoy Of The Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance In Tumors, Nikhil Hebbar, Ravshan Burikhanov, Nidhi Shukla, Shirley Qiu, Yanming Zhao, Kojo S. J. Elenitoba-Johnson, Vivek M. Rangnekar

Radiation Medicine Faculty Publications

Primary tumors are often heterogeneous, composed of therapy-sensitive and emerging therapy-resistant cancer cells. Interestingly, treatment of therapy-sensitive tumors in heterogeneous tumor microenvironments results in apoptosis of therapy-resistant tumors. In this study, we identify a prostate apoptosis response-4 (Par-4) amino-terminal fragment (PAF) that is released by diverse therapy-sensitive cancer cells following therapy-induced caspase cleavage of the tumor suppressor Par-4 protein. PAF caused apoptosis in cancer cells resistant to therapy and inhibited tumor growth. A VASA segment of Par-4 mediated its binding and degradation by the ubiquitin ligase Fbxo45, resulting in loss of Par-4 proapoptotic function. Conversely, PAF, which contains this VASA ...


Reversion Of Epithelial-Mesenchymal Transition By A Novel Agent Dz-50 Via Igf Binding Protein-3 In Prostate Cancer Cells, Zheng Cao, Shahriar Koochekpour, Stephen E. Strup, Natasha Kyprianou Jul 2017

Reversion Of Epithelial-Mesenchymal Transition By A Novel Agent Dz-50 Via Igf Binding Protein-3 In Prostate Cancer Cells, Zheng Cao, Shahriar Koochekpour, Stephen E. Strup, Natasha Kyprianou

Urology Faculty Publications

Dysregulation of transforming growth factor-β1 (TGF-β1) and insulin-like growth factor (IGF) axis has been linked to reactive stroma dynamics in prostate cancer progression. IGF binding protein-3 (IGFBP3) induction is initiated by stroma remodeling and could represent a potential therapeutic target for prostate cancer. In previous studies a lead quinazoline-based Doxazosin® derivative, DZ-50, impaired prostate tumor growth by targeting proteins involved in focal adhesion, anoikis resistance and epithelial-mesenchymal-transition (EMT). This study demonstrates that DZ-50 increased expression of the epithelial marker E-cadherin, and decreased the mesenchymal marker N-cadherin in human prostate cancer cells. In DU-145 cells, the effect of DZ-50 on EMT ...


Jnks Function As Cdk4-Activating Kinases By Phosphorylating Cdk4 And P21, B. Colleoni, S. Paternot, J. M. Pita, X. Bisteau, K. Coulonval, Roger J. Davis, E. Raspe, P. P. Roger Jul 2017

Jnks Function As Cdk4-Activating Kinases By Phosphorylating Cdk4 And P21, B. Colleoni, S. Paternot, J. M. Pita, X. Bisteau, K. Coulonval, Roger J. Davis, E. Raspe, P. P. Roger

Open Access Articles

Cyclin D-CDK4/6 are the first cyclin-dependent kinase (CDK) complexes to be activated by mitogenic/oncogenic pathways. They have a central role in the cell multiplication decision and in its deregulation in cancer cells. We identified T172 phosphorylation of CDK4 rather than cyclin D accumulation as the distinctly regulated step determining CDK4 activation. This finding challenges the view that the only identified metazoan CDK-activating kinase, cyclin H-CDK7-Mat1 (CAK), which is constitutively active, is responsible for the activating phosphorylation of all cell cycle CDKs. We previously showed that T172 phosphorylation of CDK4 is conditioned by an adjacent proline (P173), which is ...


The Dkk3 Gene Encodes A Vital Intracellular Regulator Of Cell Proliferation, Jack L. Leonard, Deborah Marie Leonard, Scot A. Wolfe, Jilin Liu, Jaime A. Rivera-Perez, Michelle Yang, Ryan T. Leonard, Jacob P. S. Johnson, Prashant Kumar, Kate L. Liebmann, Amanda A. Tutto, Zhongming Mou, Karl J. Simin Jul 2017

The Dkk3 Gene Encodes A Vital Intracellular Regulator Of Cell Proliferation, Jack L. Leonard, Deborah Marie Leonard, Scot A. Wolfe, Jilin Liu, Jaime A. Rivera-Perez, Michelle Yang, Ryan T. Leonard, Jacob P. S. Johnson, Prashant Kumar, Kate L. Liebmann, Amanda A. Tutto, Zhongming Mou, Karl J. Simin

Open Access Articles

Members of the Dickkopf (Dkk) family of Wnt antagonists interrupt Wnt-induced receptor assembly and participate in axial patterning and cell fate determination. One family member, DKK3, does not block Wnt receptor activation. Loss of Dkk3 expression in cancer is associated with hyperproliferation and dysregulated ss-catenin signaling, and ectopic expression of Dkk3 halts cancer growth. The molecular events mediating the DKK3-dependent arrest of ss-catenin-driven cell proliferation in cancer cells are unknown. Here we report the identification of a new intracellular gene product originating from the Dkk3 locus. This Dkk3b transcript originates from a second transcriptional start site located in intron 2 ...


The Regulation Of Snail: On The Ubiquitin Edge, Qian Yu, Binhua P. Zhou, Yadi Wu Jul 2017

The Regulation Of Snail: On The Ubiquitin Edge, Qian Yu, Binhua P. Zhou, Yadi Wu

Pharmacology and Nutritional Sciences Faculty Publications

Metastasis accounts for a majority of cancer death. One key feature during metastasis is epithelial-mesenchymal transition (EMT), which is regulated by transcription factors such as Snail and Twist. In non-malignant cells, Snail has a short half-life and is degraded via ubiquitination, but its stability is increased in cancer cell. However, the mechanism by which Snail escapes ubiquitination and degradation remains unknown. Recently, we found that Dub3 is a deubiquinase of Snail. Most importantly, we determined that Dub3 responded to extracellular signals such as IL-6, and that the resultant signaling prevented Snail degradation, and promoted cancer growth, invasion, and migration. In ...


Cdc6 Contributes To Abrogating The G1 Checkpoint Under Hypoxic Conditions In Hpv E7 Expressing Cells, Hanxiang Chen, Qishu Zhang, Lijun Qiao, Xueli Fan, Weifang Zhang, Weiming Zhao, Jason J. Chen Jun 2017

Cdc6 Contributes To Abrogating The G1 Checkpoint Under Hypoxic Conditions In Hpv E7 Expressing Cells, Hanxiang Chen, Qishu Zhang, Lijun Qiao, Xueli Fan, Weifang Zhang, Weiming Zhao, Jason J. Chen

Open Access Articles

The human papillomavirus (HPV) plays a central role in cervical carcinogenesis and its oncogene E7 is essential in this process. We showed here that E7 abrogated the G1 cell cycle checkpoint under hypoxia and analyzed key cell cycle related proteins for their potential role in this process. To further explore the mechanism by which E7 bypasses hypoxia-induced G1 arrest, we applied a proteomic approach and used mass spectrometry to search for proteins that are differentially expressed in E7 expressing cells under hypoxia. Among differentially expressed proteins identified, Cdc6 is a DNA replication initiation factor and exhibits oncogenic activities when overexpressed ...


An Embryonic Stem Cell-Specific Nurd Complex Functions Through Interaction With Wdr5, Ly-Sha Ee, Kurtis N. Mccannell, Yang Tang, Nancy Fernandes, W. Rod Hardy, Michael R. Green, Feixia Chu, Thomas G. Fazzio Jun 2017

An Embryonic Stem Cell-Specific Nurd Complex Functions Through Interaction With Wdr5, Ly-Sha Ee, Kurtis N. Mccannell, Yang Tang, Nancy Fernandes, W. Rod Hardy, Michael R. Green, Feixia Chu, Thomas G. Fazzio

Open Access Articles

The Nucleosome Remodeling and Deacetylase (NuRD) complex is a chromatin regulatory complex that functions as a transcriptional co-repressor in metazoans. The NuRD subunit MBD3 is essential for targeting and assembly of a functional NuRD complex as well as embryonic stem cell (ESC) pluripotency. Three MBD3 isoforms (MBD3A, MBD3B, and MBD3C) are expressed in mouse. Here, we find that the MBD3C isoform contains a unique 50-amino-acid N-terminal region that is necessary for MBD3C to specifically interact with the histone H3 binding protein WDR5. Domain analyses of WDR5 reveal that the H3 binding pocket is required for interaction with MBD3C. We find ...


The Brg1 Atpase Of Human Swi/Snf Chromatin Remodeling Enzymes As A Driver Of Cancer, Qiong Wu, Jane B. Lian, Janet L. Stein, Gary S. Stein, Jeffrey A. Nickerson, Anthony N. Imbalzano Jun 2017

The Brg1 Atpase Of Human Swi/Snf Chromatin Remodeling Enzymes As A Driver Of Cancer, Qiong Wu, Jane B. Lian, Janet L. Stein, Gary S. Stein, Jeffrey A. Nickerson, Anthony N. Imbalzano

Pediatric Publications

Mammalian SWI/SNF enzymes are ATP-dependent remodelers of chromatin structure. These multisubunit enzymes are heterogeneous in composition; there are two catalytic ATPase subunits, BRM and BRG1, that are mutually exclusive, and additional subunits are incorporated in a combinatorial manner. Recent findings indicate that approximately 20% of human cancers contain mutations in SWI/SNF enzyme subunits, leading to the conclusion that the enzyme subunits are critical tumor suppressors. However, overexpression of specific subunits without apparent mutation is emerging as an alternative mechanism by which cellular transformation may occur. Here we highlight recent evidence linking elevated expression of the BRG1 ATPase to ...


Jak/Stat Pathway Inhibition Overcomes Il7-Induced Glucocorticoid Resistance In A Subset Of Human T-Cell Acute Lymphoblastic Leukemias, C. Delgado-Martin, L. K. Meyer, B. J. Huang, M. S. Zinter, J. V. Nguyen, G. A. Smith, J. Taunton, S. S. Winter, Justine R. Roderick, Michelle A. Kelliher, T. M. Horton, B. L. Wood, D. T. Teachey, M. L. Hermiston May 2017

Jak/Stat Pathway Inhibition Overcomes Il7-Induced Glucocorticoid Resistance In A Subset Of Human T-Cell Acute Lymphoblastic Leukemias, C. Delgado-Martin, L. K. Meyer, B. J. Huang, M. S. Zinter, J. V. Nguyen, G. A. Smith, J. Taunton, S. S. Winter, Justine R. Roderick, Michelle A. Kelliher, T. M. Horton, B. L. Wood, D. T. Teachey, M. L. Hermiston

UMass Metabolic Network Publications

While outcomes for children with T-cell acute lymphoblastic leukemia (T-ALL) have improved dramatically, survival rates for patients with relapsed/refractory disease remain dismal. Prior studies indicate that glucocorticoid (GC) resistance is more common than resistance to other chemotherapies at relapse. In addition, failure to clear peripheral blasts during a prednisone prophase correlates with an elevated risk of relapse in newly diagnosed patients. Here we show that intrinsic GC resistance is present at diagnosis in early thymic precursor (ETP) T-ALLs as well as in a subset of non-ETP T-ALLs. GC-resistant non-ETP T-ALLs are characterized by strong induction of JAK/STAT signaling ...


Using Α-Mangostin From Garcinia Mangostana To Block Cell Death Caused By Paclitaxel In Proliferating Bhk Cells, Andrea Wojciechowski May 2017

Using Α-Mangostin From Garcinia Mangostana To Block Cell Death Caused By Paclitaxel In Proliferating Bhk Cells, Andrea Wojciechowski

Honors Program Projects

One of the most commonly found mutations in cancers is a mutation in p53. A mutation in p53 does not allow the cell to correct DNA damage or mutations properly, leading to uncontrolled growth and a tumor. α-Mangostin is a p53 activator found in a fruit from Southeast Asia, and when applied to cells, it will arrest them in the S phase. Paclitaxel is a chemotherapy that kills cells as they enter mitosis. Arrested cells will not enter mitosis and therefore will not be killed by paclitaxel. Because of mutated dysfunctional p53, cancer cells are not susceptible to arrest by ...


Differential Involvement Of The Microtubule Cytoskeleton In Insulin Receptor Substrate 1 (Irs-1) And Irs-2 Signaling To Akt Determines The Response To Microtubule Disruption In Breast Carcinoma Cells, Jose Mercado-Matos, Jennifer L. Clark, Andrew J. Piper, Jenny Janusis, Leslie M. Shaw May 2017

Differential Involvement Of The Microtubule Cytoskeleton In Insulin Receptor Substrate 1 (Irs-1) And Irs-2 Signaling To Akt Determines The Response To Microtubule Disruption In Breast Carcinoma Cells, Jose Mercado-Matos, Jennifer L. Clark, Andrew J. Piper, Jenny Janusis, Leslie M. Shaw

UMass Metabolic Network Publications

The insulin receptor substrate (IRS) proteins serve as essential signaling intermediates for the activation of PI3K by both the insulin-like growth factor 1 receptor (IGF-1R) and its close family member, the insulin receptor (IR). Although IRS-1 and IRS-2 share significant homology, they regulate distinct cellular responses downstream of these receptors and play divergent roles in breast cancer. To investigate the mechanism by which signaling through IRS-1 and IRS-2 results in differential outcomes, we assessed the involvement of the microtubule cytoskeleton in IRS-dependent signaling. Treatment with drugs that either stabilize or disrupt microtubules reveal that an intact microtubule cytoskeleton contributes to ...


Rna-Sequencing Reveals Direct Targets Of Tumor Suppressor Mir-203 In Human Mammary Epithelial Cells, Alexander P. Boardman, Victoria E. Pedanou, Tessa M. Simone, Michael R. Green May 2017

Rna-Sequencing Reveals Direct Targets Of Tumor Suppressor Mir-203 In Human Mammary Epithelial Cells, Alexander P. Boardman, Victoria E. Pedanou, Tessa M. Simone, Michael R. Green

Senior Scholars Program

Background: Breast cancer is the leading cause of cancer-related mortality in women worldwide. Since a significant portion of cases present with or progress to metastatic disease, furthering our understanding of metastasis is critical to develop better treatments. Epithelial cells maintain contact with the extracellular matrix (ECM) predominantly via integrin engagement, a process required for tissue integrity and barrier function. In non-transformed cells, loss of ECM adhesion promotes a specialized form of programmed cell death, anoikis. In order for efficient metastasis to occur, breast tumor cells must evade anoikis. miR-203, known to be down-regulated in several cancers, was found by our ...


Paracrine Regulation Of Melanocyte Genomic Stability: A Focus On Nucleotide Excision Repair, Stuart Gordon Jarrett, Katharine Marie Carter, John August D'Orazio May 2017

Paracrine Regulation Of Melanocyte Genomic Stability: A Focus On Nucleotide Excision Repair, Stuart Gordon Jarrett, Katharine Marie Carter, John August D'Orazio

Markey Cancer Center Faculty Publications

UV radiation is a major environmental risk factor for the development of melanoma by causing DNA damage and mutations. Resistance to UV damage is largely determined by the capacity of melanocytes to respond to UV injury by repairing mutagenic photolesions. The nucleotide excision repair (NER) pathway is the major mechanism by which cells correct UV photodamage. This multistep process involves the basic steps of damage recognition, isolation, localized strand unwinding, assembly of a repair complex, excision of the damage‐containing strand 3′ and 5′ to the photolesion, synthesis of a sequence‐appropriate replacement strand, and finally ligation to restore continuity ...


Runx1 And Breast Cancer, Jose Mercado-Matos, Asia N. Matthew-Onabanjo, Leslie M. Shaw Apr 2017

Runx1 And Breast Cancer, Jose Mercado-Matos, Asia N. Matthew-Onabanjo, Leslie M. Shaw

UMass Metabolic Network Publications

News on: Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition, by Hong et al. Oncotarget. 2017; 8:17610-27. doi: 10.18632/oncotarget.15381.


Mammalian Swi/Snf Enzymes And The Epigenetics Of Tumor Cell Metabolic Reprogramming, Jeffrey A. Nickerson, Qiong Wu, Anthony N. Imbalzano Apr 2017

Mammalian Swi/Snf Enzymes And The Epigenetics Of Tumor Cell Metabolic Reprogramming, Jeffrey A. Nickerson, Qiong Wu, Anthony N. Imbalzano

UMass Metabolic Network Publications

Tumor cells reprogram their metabolism to survive and grow in a challenging microenvironment. Some of this reprogramming is performed by epigenetic mechanisms. Epigenetics is in turn affected by metabolism; chromatin modifying enzymes are dependent on substrates that are also key metabolic intermediates. We have shown that the chromatin remodeling enzyme Brahma-related gene 1 (BRG1), an epigenetic regulator, is necessary for rapid breast cancer cell proliferation. The mechanism for this requirement is the BRG1-dependent transcription of key lipogenic enzymes and regulators. Reduction in lipid synthesis lowers proliferation rates, which can be restored by palmitate supplementation. This work has established BRG1 as ...


Genetic Disruption Of Oncogenic Kras Sensitizes Lung Cancer Cells To Fas Receptor-Mediated Apoptosis, Haiwei Mou, Jill Moore, Sunil K. Malonia, Yingxiang Li, Deniz M. Ozata, Soren Hough, Chun-Qing Song, Jordan L. Smith, Andrew H. Fischer, Zhiping Weng, Michael R. Green, Wen Xue Apr 2017

Genetic Disruption Of Oncogenic Kras Sensitizes Lung Cancer Cells To Fas Receptor-Mediated Apoptosis, Haiwei Mou, Jill Moore, Sunil K. Malonia, Yingxiang Li, Deniz M. Ozata, Soren Hough, Chun-Qing Song, Jordan L. Smith, Andrew H. Fischer, Zhiping Weng, Michael R. Green, Wen Xue

Program in Bioinformatics and Integrative Biology Publications

Genetic lesions that activate KRAS account for approximately 30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form ...


Runx1 Stabilizes The Mammary Epithelial Cell Phenotype And Prevents Epithelial To Mesenchymal Transition, Deli Hong, Terri L. Messier, Coralee E. Tye, Jason Dobson, Andrew J. Fritz, Kenneth R. Sikora, Gillian Browne, Janet L. Stein, Jane B. Lian, Gary S. Stein Mar 2017

Runx1 Stabilizes The Mammary Epithelial Cell Phenotype And Prevents Epithelial To Mesenchymal Transition, Deli Hong, Terri L. Messier, Coralee E. Tye, Jason Dobson, Andrew J. Fritz, Kenneth R. Sikora, Gillian Browne, Janet L. Stein, Jane B. Lian, Gary S. Stein

Open Access Articles

Runx1 is a well characterized transcription factor essential for hematopoietic differentiation and Runx1 mutations are the cause of leukemias. Runx1 is highly expressed in normal epithelium of most glands and recently has been associated with solid tumors. Notably, the function of Runx1 in the mammary gland and how it is involved in initiation and progression of breast cancer is still unclear. Here we demonstrate the consequences of Runx1 loss in normal mammary epithelial and breast cancer cells. We first observed that Runx1 is decreased in tumorigenic and metastatic breast cancer cells. We also observed loss of Runx1 expression upon induction ...


Relb Expression Determines The Differential Effects Of Ascorbic Acid In Normal And Cancer Cells, Xiaowei Wei, Yong Xu, Fang Fang Xu, Luksana Chaiswing, David M. Schnell, Teresa Noel, Chi Wang, Jinfei Chen, Daret K. St. Clair, William H. St. Clair Mar 2017

Relb Expression Determines The Differential Effects Of Ascorbic Acid In Normal And Cancer Cells, Xiaowei Wei, Yong Xu, Fang Fang Xu, Luksana Chaiswing, David M. Schnell, Teresa Noel, Chi Wang, Jinfei Chen, Daret K. St. Clair, William H. St. Clair

Toxicology and Cancer Biology Faculty Publications

Cancer cells typically experience higher oxidative stress than normal cells, such that elevating pro-oxidant levels can trigger cancer cell death. Although pre-exposure to mild oxidative agents will sensitize cancer cells to radiation, this pre-exposure may also activate the adaptive stress defense system in normal cells. Ascorbic acid is a prototype redox modulator that when infused intravenously appears to kill cancers without injury to normal tissues; however, the mechanisms involved remain elusive. In this study, we show how ascorbic acid kills cancer cells and sensitizes prostate cancer to radiation therapy while also conferring protection upon normal prostate epithelial cells against radiation-induced ...