Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Cell Biology

Induction Of Ampk Activation By N,N'-Diarylurea Fnd-4b Decreases Growth And Increases Apoptosis In Triple Negative And Estrogen-Receptor Positive Breast Cancers, Jeremy Johnson, Piotr G. Rychahou, Vitaliy M. Sviripa, Heidi L. Weiss, Chunming Liu, David S. Watt, B. Mark Evers Mar 2019

Induction Of Ampk Activation By N,N'-Diarylurea Fnd-4b Decreases Growth And Increases Apoptosis In Triple Negative And Estrogen-Receptor Positive Breast Cancers, Jeremy Johnson, Piotr G. Rychahou, Vitaliy M. Sviripa, Heidi L. Weiss, Chunming Liu, David S. Watt, B. Mark Evers

Markey Cancer Center Faculty Publications

Purpose

Triple negative breast cancer (TNBC) is the most lethal and aggressive subtype of breast cancer. AMP-activated protein kinase (AMPK) is a major energy regulator that suppresses tumor growth, and 1-(3-chloro-4-((trifluoromethyl)thio)phenyl)-3-(4-(trifluoromethoxy)phenyl)urea (FND-4b) is a novel AMPK activator that inhibits growth and induces apoptosis in colon cancer. The purpose of this project was to test the effects of FND-4b on AMPK activation, proliferation, and apoptosis in breast cancer with a particular emphasis on TNBC.

Materials and methods

(i) Estrogen-receptor positive breast cancer (ER+BC; MCF-7, and T-47D), TNBC (MDA-MB-231 and HCC-1806), and ...


The Role Of Talin2 In Breast Cancer Tumorigenesis And Metastasis, Liqing Li, Xiang Li, Lei Qi, Piotr G. Rychahou, Naser Jafari, Cai Huang Nov 2017

The Role Of Talin2 In Breast Cancer Tumorigenesis And Metastasis, Liqing Li, Xiang Li, Lei Qi, Piotr G. Rychahou, Naser Jafari, Cai Huang

Markey Cancer Center Faculty Publications

Recent studies show that talin2 has a higher affinity to β-integrin tails and is indispensable for traction force generation and cell invasion. However, its roles in cell migration, cancer cell metastasis and tumorigenesis remain to be determined. Here, we used MDA-MB-231 human breast cancer cells as a model to define the roles of talin2 in cell migration, invasion, metastasis and tumorigenesis. We show here that talin2 knockdown (KD) inhibited cell migration and focal adhesion dynamics, a key step in cell migration, and that talin2 knockout (KO) inhibited cell invasion and traction force generation, the latter is crucial for cell invasion ...


Paracrine Regulation Of Melanocyte Genomic Stability: A Focus On Nucleotide Excision Repair, Stuart Gordon Jarrett, Katharine Marie Carter, John August D'Orazio May 2017

Paracrine Regulation Of Melanocyte Genomic Stability: A Focus On Nucleotide Excision Repair, Stuart Gordon Jarrett, Katharine Marie Carter, John August D'Orazio

Markey Cancer Center Faculty Publications

UV radiation is a major environmental risk factor for the development of melanoma by causing DNA damage and mutations. Resistance to UV damage is largely determined by the capacity of melanocytes to respond to UV injury by repairing mutagenic photolesions. The nucleotide excision repair (NER) pathway is the major mechanism by which cells correct UV photodamage. This multistep process involves the basic steps of damage recognition, isolation, localized strand unwinding, assembly of a repair complex, excision of the damage‐containing strand 3′ and 5′ to the photolesion, synthesis of a sequence‐appropriate replacement strand, and finally ligation to restore continuity ...


Phlpp Regulates Hexokinase 2-Dependent Glucose Metabolism In Colon Cancer Cells, Xiaopeng Xiong, Yang-An Wen, Mihail I. Mitov, Mary C. Oaks, Shigeki Miyamoto, Tianyan Gao Jan 2017

Phlpp Regulates Hexokinase 2-Dependent Glucose Metabolism In Colon Cancer Cells, Xiaopeng Xiong, Yang-An Wen, Mihail I. Mitov, Mary C. Oaks, Shigeki Miyamoto, Tianyan Gao

Markey Cancer Center Faculty Publications

Increased glucose metabolism is considered as one of the most important metabolic alterations adapted by cancer cells in order to generate energy as well as high levels of glycolytic intermediates to support rapid proliferation. PH domain leucine-rich repeat protein phosphatase (PHLPP) belongs to a novel family of Ser/Thr protein phosphatases that function as tumor suppressors in various types of human cancer. Here we determined the role of PHLPP in regulating glucose metabolism in colon cancer cells. Knockdown of PHLPP increased the rate of glucose consumption and lactate production, whereas overexpression of PHLPP had the opposite effect. Bioenergetic analysis using ...


Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao Oct 2016

Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao

Markey Cancer Center Faculty Publications

The proper establishment of epithelial polarity allows cells to sense and respond to signals that arise from the microenvironment in a spatiotemporally controlled manner. Atypical PKCs (aPKCs) are implicated as key regulators of epithelial polarity. However, the molecular mechanism underlying the negative regulation of aPKCs remains largely unknown. In this study, we demonstrated that PH domain leucine-rich repeat protein phosphatase (PHLPP), a novel family of Ser/Thr protein phosphatases, plays an important role in regulating epithelial polarity by controlling the phosphorylation of both aPKC isoforms. Altered expression of PHLPP1 or PHLPP2 disrupted polarization of Caco2 cells grown in 3D cell ...