Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Cell Biology

Developmental Expression Of A Candidate Mullerian Inhibiting Substance Type Ii Receptor, Jose Teixeira, Wei He, Paresh Shah, Nobuyuki Morikawa, Mary Lee, Elizabeth Catlin, Peter Hudson, John Wing, David Maclaughlin, Patricia Donahoe Sep 2014

Developmental Expression Of A Candidate Mullerian Inhibiting Substance Type Ii Receptor, Jose Teixeira, Wei He, Paresh Shah, Nobuyuki Morikawa, Mary Lee, Elizabeth Catlin, Peter Hudson, John Wing, David Maclaughlin, Patricia Donahoe

Mary M. Lee

We have isolated a candidate Mullerian inhibiting substance (MIS) type II receptor complementary DNA from an embryonic rat urogenital ridge library and have studied its binding to MIS, its developmental pattern of expression and tissue distribution. By in situ hybridization with a full-length riboprobe, the receptor is expressed in the mesenchymal cells surrounding the Mullerian duct at embryonic days 14, 15, and 16 and in tubular and follicular structures of the rat fetal gonads. Expression of the messenger RNA was also seen in the granules cells and seminiferous tubules of pubertal gonads. Northern analysis revealed that the MIS type II ...


Developmentally Regulated Polyadenylation Of Two Discrete Messenger Ribonucleic Acids For Mullerian Inhibiting Substance, Mary Lee, Richard Cate, Patricia Donahoe, Gerald Waneck Sep 2014

Developmentally Regulated Polyadenylation Of Two Discrete Messenger Ribonucleic Acids For Mullerian Inhibiting Substance, Mary Lee, Richard Cate, Patricia Donahoe, Gerald Waneck

Mary M. Lee

Mullerian inhibiting substance (MIS) is a 140-kilodalton homodimeric glycoprotein that causes regression of the Mullerian ducts in male embryos, and may also have a role in both males and females in the regulation of germ cell maturation. We examined the ontogeny of MIS messenger RNA (mRNA) in rat testes from midgestation through adulthood and found two discrete MIS mRNA species that are developmentally regulated. The larger 2.0-kilobase species is abundant at embryonic day 14, then decreases in late gestation, and is barely detectable after birth. The smaller 1.8-kilobase species is first noted at embryonic day 18 and is ...


Mullerian Inhibiting Substance Inhibits Testosterone Synthesis In Adult Rats, V. Sriraman, E. Niu, J. Matias, Patricia Donahoe, David Maclaughlin, Matthew Hardy, Mary Lee Sep 2014

Mullerian Inhibiting Substance Inhibits Testosterone Synthesis In Adult Rats, V. Sriraman, E. Niu, J. Matias, Patricia Donahoe, David Maclaughlin, Matthew Hardy, Mary Lee

Mary M. Lee

Mullerian inhibiting substance (MIS) is a gonadal hormone that causes regression of the Mullerian ducts during male sexual differentiation. Postnatally, MIS inhibits the proliferation and differentiation of immature Leydig cells, and transgenic mice that overexpress MIS have decreased serum testosterone concentrations. To elucidate the effects of MIS on androgen regulation in the postnatal testis, we examined testosterone synthesis in adult Sprague-Dawley rats following intratesticular and intraperitoneal injections of MIS. Intratesticular MIS injection achieved high local concentrations of MIS (574.0 +/- 60.0 ng/mL) at 4 hours, with a corresponding decline in serum testosterone concentrations to 0.7 +/- 0.1 ...


A Single Base Pair Mutation Encoding A Premature Stop Codon In The Mis Type Ii Receptor Is Responsible For Canine Persistent Mullerian Duct Syndrome, Wenfang Wu, Shengqin Wan, Pujar Shashikant, Mark Haskins, Donald Schlafer, Mary Lee, Vicki Meyers-Wallen Sep 2014

A Single Base Pair Mutation Encoding A Premature Stop Codon In The Mis Type Ii Receptor Is Responsible For Canine Persistent Mullerian Duct Syndrome, Wenfang Wu, Shengqin Wan, Pujar Shashikant, Mark Haskins, Donald Schlafer, Mary Lee, Vicki Meyers-Wallen

Mary M. Lee

Mullerian inhibiting substance (MIS), a secreted glycoprotein in the transforming growth factor-beta family of growth factors, mediates regression of the Mullerian ducts during embryonic sex differentiation in males. In persistent Mullerian duct syndrome (PMDS), rather than undergoing involution, the Mullerian ducts persist in males, giving rise to the uterus, fallopian tubes, and upper vagina. Genetic defects in MIS or its receptor (MISRII) have been identified in patients with PMDS. The phenotype in the canine model of PMDS derived from the miniature schnauzer breed is strikingly similar to that of human patients. In this model, PMDS is inherited as a sex-limited ...


Isolation Of The Rat Gene For Mullerian Inhibiting Substance, Christopher Haqq, Mary Lee, Richard Tizard, Mark Wysk, Janice Demarinis, Patricia Donahoe, Richard Cate Sep 2014

Isolation Of The Rat Gene For Mullerian Inhibiting Substance, Christopher Haqq, Mary Lee, Richard Tizard, Mark Wysk, Janice Demarinis, Patricia Donahoe, Richard Cate

Mary M. Lee

Mullerian inhibiting substance (MIS), a testicular glycoprotein also known as anti-Mullerian hormone, plays a key role in male sexual development by causing regression of the Mullerian duct, the anlagen of the uterus, the Fallopian tubes, and part of the vagina. MIS is also expressed in the postnatal ovary, but its precise function is still not known. We report here the complete nucleotide sequence of the rat MIS gene. Rat MIS is encoded in five exons and is synthesized as a precursor of 553 amino acids, containing a 24-amino-acid leader. Based on homology with human MIS, we predict that the rat ...


Guanosine Diphosphatase Is Required For Protein And Sphingolipid Glycosylation In The Golgi Lumen Of Saccharomyces Cerevisiae, Claudia Abeijon, Ken Yanagisawa, Elisabet Mandon, Alex Hausler, Kelley Moremen, Carlos Hirschberg, Phillips Robbins Feb 2012

Guanosine Diphosphatase Is Required For Protein And Sphingolipid Glycosylation In The Golgi Lumen Of Saccharomyces Cerevisiae, Claudia Abeijon, Ken Yanagisawa, Elisabet Mandon, Alex Hausler, Kelley Moremen, Carlos Hirschberg, Phillips Robbins

Elisabet Mandon

Current models for nucleotide sugar use in the Golgi apparatus predict a critical role for the lumenal nucleoside diphosphatase. After transfer of sugars to endogenous macromolecular acceptors, the enzyme converts nucleoside diphosphates to nucleoside monophosphates which in turn exit the Golgi lumen in a coupled antiporter reaction, allowing entry of additional nucleotide sugar from the cytosol. To test this model, we cloned the gene for the S. cerevisiae guanosine diphosphatase and constructed a null mutation. This mutation should reduce the concentrations of GDP-mannose and GMP and increase the concentration of GDP in the Golgi lumen. The alterations should in turn ...