Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

P53

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 29 of 29

Full-Text Articles in Cancer Biology

Study Of Alpha Mangostin As A Chemoprotective Agent For Breast Cancer Via Activation Of The P53 Pathway, Vanessa Van Oost May 2019

Study Of Alpha Mangostin As A Chemoprotective Agent For Breast Cancer Via Activation Of The P53 Pathway, Vanessa Van Oost

Honors Program Projects

Breast carcinoma is the most frequently diagnosed cancer among women and causes over 400,000 deaths each year worldwide. Current treatments such as chemotherapy are not selective for cancerous tissues but are destructive to normal tissues as well. This causes a range of side effects including pain, nausea, hair loss, weakness, and more. Inactivation of p53 is a very common mutation within human cancer cells. The ability to activate the p53 pathway which protects cells from tumor formation is lost in 50% of cancers. Due to the prevalence of this mutation, p53 is a uniquely valuable target for applied research ...


Alpha Mangostin As A Chemoprotective Agent Via Activation Of The P53 Pathway For Breast Cancer, Vanessa Van Oost Apr 2019

Alpha Mangostin As A Chemoprotective Agent Via Activation Of The P53 Pathway For Breast Cancer, Vanessa Van Oost

Scholar Week 2016 - present

Breast carcinoma is the most frequently diagnosed cancer among women and causes over 400,000 deaths yearly worldwide. Current treatments such as chemotherapy are not selective for cancerous tissues but are destructive to normal tissues as well. This causes a range of side effects including pain, nausea, hair loss, weakness, and more. Inactivation of p53 is an almost universal mutation within human cancer cells. The ability to activate the p53 pathway which protects cells from tumor formation is lost in 50% of cancers. Due to the prevalence of this mutation, p53 is a uniquely valuable target for applied research. Alpha ...


Cd147 As A Potential Therapeutic Target In Glioblastoma Treatment, Beau Adams Nov 2018

Cd147 As A Potential Therapeutic Target In Glioblastoma Treatment, Beau Adams

All NMU Master's Theses

Glioblastoma (GBM) tumors are the most common and lethal form of cancer in the central nervous system (CNS). GBM tumors appear to contain a mixture of different cell types, which makes them difficult to treat. GBM cells exhibit altered morphology from normal cells on several different levels, which highlights different pathways to potentially target for therapeutic treatments. The human surface glycoprotein CD147, also known as basigin, is expressed at significantly higher levels in GBMs compared to non-neoplastic brain tissue. Furthermore, levels of CD147 expression correlate with brain tumor progression and show the highest expression in GBM. Here, we suppressed tumor ...


Trim24 As An Oncogene In The Mammary Gland, Aundrietta Duncan May 2018

Trim24 As An Oncogene In The Mammary Gland, Aundrietta Duncan

UT GSBS Dissertations and Theses (Open Access)

Despite the many advances made in breast cancer research and treatments, breast cancer remains one of the deadliest diseases plaguing women worldwide. While many findings on genetic mutations and their role in predisposing people to breast cancer have been uncovered, we are just beginning to understand the extent to which epigenetic regulators promote tumorigenic phenotypes, metastasis, and chemotherapeutic resistance. Moreover, new experimental tools offer the ability to address questions we were previously unable to assess. My project takes advantage of a new mouse model to understand the role of a proto-oncogenic, transcriptional co-regulator, TRIM24, in mammary gland development and disease ...


Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal May 2018

Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal

UT GSBS Dissertations and Theses (Open Access)

Altered DICER1 protein levels are associated with developmental disorders, infertility, macular degenerative blindness, aging, and cancer in humans. Recently, post-translational regulation of Dicer1 via phosphorylation has been described in C. elegans. Oscillation of Dicer1 phosphorylation to regulate its activity is essential for germ cell development and embryogenesis in worms. These observations led us to posit that Dicer1 protein levels and activity are under tight regulation for normal mammalian homeostasis. To test whether phosphorylation of Dicer1 regulates its activity in mammals, I generated phospho-mimetic knock-in mouse models by replacing Serines 1712 and 1836 with Aspartic acids individually or together (dual phosphorylation ...


The Role Of Mdm2 In Dna Damage Signaling, Stanley Tam Jan 2018

The Role Of Mdm2 In Dna Damage Signaling, Stanley Tam

School of Arts & Sciences Theses

The overexpression of the oncogene MDM2 is common in a variety of human cancers. MDM2 overexpression is known to increase genome instability in cells by delaying DNA double strand break repair and γH2AX levels. This study explores the knockdown of MDM2 and how it may affect DNA damage signaling.


The Role Of Cytoplasmic Polyadenylation Element Binding Protein -2 (Cpeb-2) In Human Breast Cancer, Joshua Tordjman Jun 2017

The Role Of Cytoplasmic Polyadenylation Element Binding Protein -2 (Cpeb-2) In Human Breast Cancer, Joshua Tordjman

Electronic Thesis and Dissertation Repository

Cyclooxygenase-2 (COX-2) is overexpressed in 40-50% of breast cancers, and promotes tumour progression through increased proliferation, migration, invasion, Epithelial-to-Mesenchymal Transition (EMT), and induction of therapy-resistant Stem-Like-Cells (SLCs). COX-2 stimulates expression of two oncogenic and SLC-promoting microRNAs (miR-526b, miR-655), which simultaneously target one gene, Cytoplasmic Polyadenylation Element Binding Protein-2 (CPEB-2). Hypothesis: CPEB-2 is a tumour- and SLC-suppressing gene in breast cancer. Results: CPEB-2 knockout in a non-tumourigenic mammary epithelial cell line MCF10A demonstrated increases in proliferation, migration, invasion, EMT markers, SLC content, and VEGF-D expression. CPEB-2, an mRNA-binding translation-regulating protein, was found to regulate the translation of tumour suppressor p53. When ...


Chloroquine-Inducible Par-4 Secretion Is Essential For Tumor Cell Apoptosis And Inhibition Of Metastasis, Ravshan Burikhanov, Nikhil Hebbar, Sunil K. Noothi, Nidhi Shukla, James Sledziona, Nathália Araujo, Meghana Kudrimoti, Qing Jun Wang, David S. Watt, Danny R. Welch, Jodi Maranchie, Akihiro Harada, Vivek M. Rangnekar Jan 2017

Chloroquine-Inducible Par-4 Secretion Is Essential For Tumor Cell Apoptosis And Inhibition Of Metastasis, Ravshan Burikhanov, Nikhil Hebbar, Sunil K. Noothi, Nidhi Shukla, James Sledziona, Nathália Araujo, Meghana Kudrimoti, Qing Jun Wang, David S. Watt, Danny R. Welch, Jodi Maranchie, Akihiro Harada, Vivek M. Rangnekar

Radiation Medicine Faculty Publications

The induction of tumor suppressor proteins capable of cancer cell apoptosis represents an attractive option for the re-purposing of existing drugs. We report that the anti-malarial drug, chloroquine (CQ), is a robust inducer of Par-4 secretion from normal cells in mice and cancer patients in a clinical trial. CQ-inducible Par-4 secretion triggers paracrine apoptosis of cancer cells and also inhibits metastatic tumor growth. CQ induces Par-4 secretion via the classical secretory pathway that requires the activation of p53. Mechanistically, p53 directly induces Rab8b, a GTPase essential for vesicle transport of Par-4 to the plasma membrane prior to secretion. Our findings ...


Targeting Apoptotic Pathways To Overcome Drug Resistance In Acute Myeloid Leukemia, Rongqing Pan Jan 2017

Targeting Apoptotic Pathways To Overcome Drug Resistance In Acute Myeloid Leukemia, Rongqing Pan

UT GSBS Dissertations and Theses (Open Access)

Evasion of apoptosis is integral to tumorigenesis and drug resistance. BCL-2 and p53 proteins represent two focal nodes in convergent apoptosis signaling. Upregulation of anti-apoptotic BCL-2 family members and inactivation of p53 functions are two canonical approaches exploited by cancer cells to escape apoptosis. In the current study, we find that BCL-2 protein is highly expressed in acute myeloid leukemia (AML) cells. BCL-2–specific inhibitor ABT-199 potently induces mitochondrial apoptosis in AML cells and effectively kills AML stem/progenitor cells. Our biomarker studies demonstrate that both BH3 profiling and the expression profiling of BCL-2 proteins may serve as predictive biomarkers ...


Phosphorylation Of The Mdm2 Oncoprotein By The C-Abl Tyrosine Kinase Regulates P53 Tumor Suppression And The Radiosensitivity Of Mice, Michael I. Carr, Justine E. Roderick, Hong Zhang, Bruce A. Woda, Michelle A. Kelliher, Stephen N. Jones Dec 2016

Phosphorylation Of The Mdm2 Oncoprotein By The C-Abl Tyrosine Kinase Regulates P53 Tumor Suppression And The Radiosensitivity Of Mice, Michael I. Carr, Justine E. Roderick, Hong Zhang, Bruce A. Woda, Michelle A. Kelliher, Stephen N. Jones

UMass Metabolic Network Publications

The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present ...


Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez Aug 2016

Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez

UT GSBS Dissertations and Theses (Open Access)

Cancer is one of the leading causes of death and disease in the world. Considerable resources are spent to study and understand cancer, with the hope of developing new treatments and eventually cures that will help millions of people. Efforts to understand cancer are hindered by its inherent complexity and instability. Nonetheless, understanding the basics of tumor development and progression are the key to focused on studying the role of ΔNp63 in cancer, a p53 family member known to be involved in epithelial development, microRNA biogenesis, and stem cell maintenance. Using the strength of in vivo mouse models, we found ...


Tricurin, A Novel Formulation Of Curcumin, Epicatechin Gallate, And Resveratrol, Inhibits The Tumorigenicity Of Human Papillomaviruspositive Head And Neck Squamous Cell Carcinoma, Longzhu Piao, Sumit Mukherjee, Qing Chang, Xiujie Xie, Hong Li, Mario R. Castellanos, Probal Banerjee, Hassan Iqbal, Ryan Ivancic, Xueqian Wang, Theodoros N. Teknos, Quintin Pan Jul 2016

Tricurin, A Novel Formulation Of Curcumin, Epicatechin Gallate, And Resveratrol, Inhibits The Tumorigenicity Of Human Papillomaviruspositive Head And Neck Squamous Cell Carcinoma, Longzhu Piao, Sumit Mukherjee, Qing Chang, Xiujie Xie, Hong Li, Mario R. Castellanos, Probal Banerjee, Hassan Iqbal, Ryan Ivancic, Xueqian Wang, Theodoros N. Teknos, Quintin Pan

Publications and Research

Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer worldwide with about 600,000 new cases diagnosed in the last year. The incidence of human papillomavirus-positive head and neck squamous cell carcinoma (HPV-positive HNSCC) has rapidly increased over the past 30 years prompting the suggestion that an epidemic may be on the horizon. Therefore, there is a clinical need to develop alternate therapeutic strategies to manage the growing number of HPV-positive HNSCC patients. TriCurin is a composition of three food-derived polyphenols in unique stoichiometric proportions consisting of curcumin from the spice turmeric, resveratrol from red grapes ...


Id4 Acts As A Tumor Suppressor Via P53: Mechanistic Insight, Derrick J. Morton Jr. May 2016

Id4 Acts As A Tumor Suppressor Via P53: Mechanistic Insight, Derrick J. Morton Jr.

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

Overexpression of tumor-derived mutant p53 is a common event in tumorigenesis, suggesting an advantageous selective pressure in cancer initiation and progression. Given that p53 is found to be mutated in 50% of all human cancers, restoration of mutant p53 to its wild type biological function has been a widely sought after avenue for cancer therapy. Most research efforts have largely focused on restoration of mutant p53 by artificial means given that p53 has some degree of conformational flexibility allowing for introduction of short peptides and artificial compounds. Recently, theoretical modeling and studies focused on restoration of mutant p53 by physiological ...


F-Box Protein Fbxo31 Directs Degradation Of Mdm2 To Facilitate P53-Mediated Growth Arrest Following Genotoxic Stress, Sunil K. Malonia, Parul Dutta, Manas Kumar Santra, Michael R. Green Jul 2015

F-Box Protein Fbxo31 Directs Degradation Of Mdm2 To Facilitate P53-Mediated Growth Arrest Following Genotoxic Stress, Sunil K. Malonia, Parul Dutta, Manas Kumar Santra, Michael R. Green

Molecular, Cell and Cancer Biology Publications

The tumor suppressor p53 plays a critical role in maintaining genomic stability. In response to genotoxic stress, p53 levels increase and induce cell-cycle arrest, senescence, or apoptosis, thereby preventing replication of damaged DNA. In unstressed cells, p53 is maintained at a low level. The major negative regulator of p53 is MDM2, an E3 ubiquitin ligase that directly interacts with p53 and promotes its polyubiquitination, leading to the subsequent destruction of p53 by the 26S proteasome. Following DNA damage, MDM2 is degraded rapidly, resulting in increased p53 stability. Because of the important role of MDM2 in modulating p53 function, it is ...


Rheb Dynamics On Lysosomal Membranes Determines Mtorc1 Activity After Loss Of P53 Or Activation Of Ampk, Catherine M. Bell Jan 2015

Rheb Dynamics On Lysosomal Membranes Determines Mtorc1 Activity After Loss Of P53 Or Activation Of Ampk, Catherine M. Bell

Theses and Dissertations

The tumor suppressor TP53 is the most frequently altered gene in human cancers. The growth-promoting complex, mTORC1 plays a part of the oncogenic profile caused by dysfunctional p53. mTORC1 sits downstream of AMPK and other crucial tumor suppressors/oncogenes, PTEN, LKB1, and Akt. The antifolate pemetrexed was found by this laboratory to activate AMPK via the inhibition of the enzyme AICART in de novo purine synthesis. This work presents a mechanism of mTORC1 activation with p53 loss, as well as of mTORC1 inhibition by pemetrexed-induced AMPK. We have found that mTORC1 activity was substantially upregulated by the loss or mutation ...


The Bbc3 Antisense Intragenic Transcript, Bait, Contributes To Puma Expression By A P53-Autonomous Mechanism, Nicole C. Michael Jan 2015

The Bbc3 Antisense Intragenic Transcript, Bait, Contributes To Puma Expression By A P53-Autonomous Mechanism, Nicole C. Michael

Undergraduate Honors Theses

p53 is a tumor suppressor protein which orchestrates cell cycle arrest or apoptosis to prevent the hyperproliferation of cells which could lead to cancer. However, when p53 is inactivated, which happens in over 50% of cancers, it fails to induce PUMA, a potent apoptotic protein. Loss of PUMA makes cancer cells less likely to undergo apoptosis upon stress stimuli. Recent GRO-seq data revealed unique antisense transcription initiated 6kb into the PUMA locus, creating a small noncoding RNA transcript dubbed BAIT (BBC3 antisense intragenic transcript). This project focused on understanding the expression and function of BAIT, which we hypothesized could modulate ...


Pemetrexed, A Modulator Of Amp-Activated Kinase Signaling And An Inhibitor Of Wild Type And Mutant P53, Stuti Agarwal Jan 2015

Pemetrexed, A Modulator Of Amp-Activated Kinase Signaling And An Inhibitor Of Wild Type And Mutant P53, Stuti Agarwal

Theses and Dissertations

New drug discoveries and new approaches towards diagnosis and treatment have improved cancer therapeutics remarkably. One of the most influential and effective discoveries in the field of cancer therapeutics was antimetabolites, such as the antifolates. The interest in antifolates increased as some of the antifolates showed responses in cancers, such as mesothelioma, leukemia, and breast cancers. When pemetrexed (PTX) was discovered, our laboratory had established that the primary mechanism of action of pemetrexed is to inhibit thymidylate 22 synthase (TS) (E. Taylor et al., 1992). Preclinical studies have shown that PTX has a broad range of antitumor activity in human ...


Genotoxic Stress-Induced Expression Of P53 And Restoration Of Apoptosis In Leukemic Clam Hemocytes With Cytoplasmically Sequestered P53, Stefanie Boettger, Emily Jerszyk, Ben Low, Charles Walker Oct 2014

Genotoxic Stress-Induced Expression Of P53 And Restoration Of Apoptosis In Leukemic Clam Hemocytes With Cytoplasmically Sequestered P53, Stefanie Boettger, Emily Jerszyk, Ben Low, Charles Walker

S. Anne Boettger

No abstract provided.


Brit1/Mcph1 Mediates The Dna Damage Response By Inducing P53 Stability And Promoting Atr Signaling, Edward Wang Aug 2014

Brit1/Mcph1 Mediates The Dna Damage Response By Inducing P53 Stability And Promoting Atr Signaling, Edward Wang

UT GSBS Dissertations and Theses (Open Access)

The BRCT-repeat inhibitor of hTERT (BRIT1)/MCPH1 protein promotes the process of homologous recombination (HR) to repair DNA double strand breaks (DSBs). In response to DSBs, BRIT1 foci form at damaged sites, and recruits downstream repair proteins including 53BP1, MDC1, NBS1, and the SWI/SNF complex to the DSB region to promote DNA repair. BRIT1 copy number deficiency correlates with increased genomic instability in ovarian cancer specimens and breast cancer cell lines. Here, we propose that additional functions of BRIT1 include a direct interaction with the p53 tumor suppressor protein to promote p53 stability, and binding and recruitment of TopBP1 ...


Characterization Of The Anti-Apoptotic Function Of The Lysine Demethylase Plant Homeodomain Finger Protein 8 (Phf8), Kimberly Muranko Jun 2014

Characterization Of The Anti-Apoptotic Function Of The Lysine Demethylase Plant Homeodomain Finger Protein 8 (Phf8), Kimberly Muranko

Electronic Thesis and Dissertation Repository

Apoptosis is an essential process in development and tissue maintenance. The tumor suppressor protein p53 initiates apoptosis through transactivation of pro-apoptotic genes when cellular stress is detected. This study identifies a regulatory role for the lysine demethylase, PHF8, in the p53-mediated apoptosis pathway. We initially suspected PHF8 of demethylating the adaptor protein Numb, however found this to be untrue. PHF8 has been found to have oncogenic properties including an anti-apoptotic effect, however how PHF8 negatively affects apoptosis has not been previously investigated. We found PHF8 inhibits translation of the pro-apoptotic genes TP53, BAX and CASP3. Chromatin immunoprecipitation revealed PHF8 binding ...


New Insights Into The Roles Of Human Dna Damage Checkpoint Protein Atr In The Regulation Of Nucleotide Excision Repair And Dna Damage-Induced Cell Death, Zhengke Li Dec 2013

New Insights Into The Roles Of Human Dna Damage Checkpoint Protein Atr In The Regulation Of Nucleotide Excision Repair And Dna Damage-Induced Cell Death, Zhengke Li

Electronic Theses and Dissertations

Integrity of the human genome is frequently threatened by endogenous and exogenous DNA damaging reagents that may lead to genome instability and cancer. Cells have evolved multiple mechanisms to repair DNA damage or to eliminate the damaged cells beyond repair and to prevent diverse diseases. Among these are ataxia telangiectasia and Rad3-related (ATR)-mediated DNA damage checkpoint and nucleotide excision repair (NER) that are the major pathways by which cells handle ultraviolet C (UV-C)- or other exogenous genotoxin-induced bulky DNA damage. However, it is unclear how these 2 pathways may be coordinated. In this study we show that ATR physically ...


A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan Dec 2012

A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan

UT GSBS Dissertations and Theses (Open Access)

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates ...


14-3-3 Zeta Overexpression Serves As A Novel Molecular Switch Turning Tgf-Beta From Tumor Suppressor To Tumor Promoter, Jia Xu May 2012

14-3-3 Zeta Overexpression Serves As A Novel Molecular Switch Turning Tgf-Beta From Tumor Suppressor To Tumor Promoter, Jia Xu

UT GSBS Dissertations and Theses (Open Access)

TGF-β plays an important role in differentiation and tissue morphogenesis as well as cancer progression. However, the role of TGF-β in cancer is complicate. TGF-β has primarily been recognized as tumor suppressor, because it can directly inhibit cell proliferation of normal and premalignant epithelial cell. However, in the last stage of tumor progression, TGF-β functions as tumor promoter to enhance tumor cells metastatic dissemination and expands metastatic colonies. Currently, the mechanism of how TGF-β switches its role from tumor suppressor to promoter still remains elusive. Here we identify that overexpression of 14-3-3ζ inhibits TGF-β’s cell cytostatic program through destabilizing ...


Function Of Znf668 In Cancer Development, Ruozhen Hu Dec 2011

Function Of Znf668 In Cancer Development, Ruozhen Hu

UT GSBS Dissertations and Theses (Open Access)

Human cancer develops as a result of accumulation of mutations in oncogenes and tumor suppressor genes. Zinc finger protein 668 (ZNF668) has recently been identified and validated as one of the highly mutated genes in breast cancer, but its function is entirely unknown. Here, we report two major functions of ZNF668 in cancer development.

(1) ZNF668 functions as a tumor suppressor by regulating p53 protein stability and function. We demonstrate that ZNF668 is a nucleolar protein that physically interacts with both MDM2 and p53. By binding to MDM2, ZNF668 regulates MDM2 autoubiquitination and prevents MDM2-mediated p53 ubiquitination and degradation; ZNF668 ...


A Novel Function For Aurora B Kinase In The Regulation Of P53 By Phosphorylation, Chris P. Gully May 2011

A Novel Function For Aurora B Kinase In The Regulation Of P53 By Phosphorylation, Chris P. Gully

UT GSBS Dissertations and Theses (Open Access)

The mitotic kinase Aurora B plays a pivotal role in mitosis and cytokinesis and governs the spindle assembly checkpoint which ensures correct chromosome segregation and normal progression through mitosis. Aurora B is overexpressed in breast and other cancers and may be an important molecular target for chemotherapy. Tumor suppressor p53 is the guardian of the genome and an important negative regulator of the cell cycle. Previously, it was unknown whether Aurora B and p53 had mutual regulation during the cell cycle. A small molecule specific inhibitor of Aurora B, AZD1152, gave us an indication that Aurora B negatively impacted p53 ...


The Consequences Of Disrupting The Mdm2-P53 Balance In Hematopoiesis, Hussein A. Abbas May 2010

The Consequences Of Disrupting The Mdm2-P53 Balance In Hematopoiesis, Hussein A. Abbas

UT GSBS Dissertations and Theses (Open Access)

The bone marrow accommodates hematopoietic stem cells and progenitors. These cells provide an indispensible resource for replenishing the blood constituents throughout an organism’s life. A tissue with such a high turn-over rate mandates intact cycling checkpoint and apoptotic pathways to avoid inappropriate cell proliferation and ultimately the development of leukemias. p53, a major tumor suppressor, is a transcription factor that regulates cell cycle, and induces apoptosis and senescence. Mice inheriting a hypomorphic p53 allele in the absence of Mdm2, a p53 inhibitor, have elevated p53 cell cycle activity and die by postnatal day 13 due to hematopoietic failure. Hematopoiesis ...


Defining The Roles Of P300/Cbp (Creb Binding Protein) And S5a In P53 Polyubiquitination, Degradation And Dna Damage Responses: A Dissertation, Dingding Shi Jan 2010

Defining The Roles Of P300/Cbp (Creb Binding Protein) And S5a In P53 Polyubiquitination, Degradation And Dna Damage Responses: A Dissertation, Dingding Shi

GSBS Dissertations and Theses

p53, known as the “guardian of the genome”, is the most well-characterized tumor suppressor gene. The central role of p53 is to prevent genome instability. p53 is the central node in an incredibly elaborate genome defense network for receiving various input stress signals and controlling diverse cellular responses. The final output of this network is determined not only by the p53 protein itself, but also by other p53 cooperating proteins.

p300 and CBP (CREB-Binding Protein) act as multifunctional regulators of p53 via acetylase and ubiquitin ligase activities. Prior work in vitro has shown that the N-terminal 595 aa of p300 ...


Genotoxic Stress-Induced Expression Of P53 And Restoration Of Apoptosis In Leukemic Clam Hemocytes With Cytoplasmically Sequestered P53, Stefanie Boettger, Emily Jerszyk, Ben Low, Charles Walker Jan 2008

Genotoxic Stress-Induced Expression Of P53 And Restoration Of Apoptosis In Leukemic Clam Hemocytes With Cytoplasmically Sequestered P53, Stefanie Boettger, Emily Jerszyk, Ben Low, Charles Walker

Biology Faculty Publications

No abstract provided.


Chmp1 Is Implicated In The Development Of Pancreatic Tumor Via The Retinoic Acid Signaling Pathway, Juliana Adedayo Akinsete Jan 2006

Chmp1 Is Implicated In The Development Of Pancreatic Tumor Via The Retinoic Acid Signaling Pathway, Juliana Adedayo Akinsete

Theses, Dissertations and Capstones

In the present study, we investigated the involvement of Chmp1 (Chromatin ModifyingProtein 1/Charged Multivesicular body Protein 1) in the development of mousepancreatic acinar tumor cell line. CRL 2151 cell line was transfected with Chmp1/CS2vector to compare growth, morphology and expression of Chmp1, p53 and pp53 (ser37) with control-transfected cells. CRL 2151 cells were treated with all-trans retinoicacid (ATRA) to compare growth, morphology and expression of Chmp1 and p53 withcontrol-treated cells. Strabismus was used as control. Results showed inhibition ofgrowth but no morphological change in transfected cells. Western blot analysis showedthat Chmp1 transfection upregulated the expression of p53, pp53 ...