Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Cancer Biology

Investigating The Roles Of Tap63 And Tap73 In Cutaneous Squamous Cell Carcinoma And Lung Adenocarcinoma, Andrew J. Davis Aug 2018

Investigating The Roles Of Tap63 And Tap73 In Cutaneous Squamous Cell Carcinoma And Lung Adenocarcinoma, Andrew J. Davis

UT GSBS Dissertations and Theses (Open Access)

TP63 and TP73 (which encode p63 and p73, respectively) are highly conserved transcription factors with important roles in development and tissue homeostasis. Similar to their homolog, p53, both p63 and p73 have been shown to mediate tumor suppression in multiple tissue types. Interestingly, however, both genes are expressed as multiple isoforms, which appear to have different and, in many cases, antagonistic functions. Through the use of isoform-specific null alleles of p63 and p73 our lab and others have shown that the full-length N-terminal isoforms of p63 and p73 (referred to as TAp63 and TAp73, respectively) exhibit distinct functions in development ...


Identification And Utility Of Dna In Exosomes, Paul Kurywchak May 2018

Identification And Utility Of Dna In Exosomes, Paul Kurywchak

UT GSBS Dissertations and Theses (Open Access)

Cancer-associated mortality has been declining for two decades but remains a significant public health problem, especially when patients initially present with advanced disease. Early detection methods have improved survival rates but remain unavailable for a majority of cancers due to a lack of sensitive biomarkers or numerous limitations associated with current diagnosis strategies. Approaches to develop “liquid biopsies” by detecting tumor cells or DNA in the blood have led to several breakthroughs and create the potential for non-invasive, routine assessment of diseases status. However, these biomarkers are rare and currently difficult to isolate, especially in the early stages of disease ...


The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

UT GSBS Dissertations and Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is ...


Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal May 2018

Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal

UT GSBS Dissertations and Theses (Open Access)

Altered DICER1 protein levels are associated with developmental disorders, infertility, macular degenerative blindness, aging, and cancer in humans. Recently, post-translational regulation of Dicer1 via phosphorylation has been described in C. elegans. Oscillation of Dicer1 phosphorylation to regulate its activity is essential for germ cell development and embryogenesis in worms. These observations led us to posit that Dicer1 protein levels and activity are under tight regulation for normal mammalian homeostasis. To test whether phosphorylation of Dicer1 regulates its activity in mammals, I generated phospho-mimetic knock-in mouse models by replacing Serines 1712 and 1836 with Aspartic acids individually or together (dual phosphorylation ...


Investigating Invasion In Ductal Carcinoma In Situ With Topographical Single Cell Genome Sequencing, Anna Casasent, Anna Casasent May 2018

Investigating Invasion In Ductal Carcinoma In Situ With Topographical Single Cell Genome Sequencing, Anna Casasent, Anna Casasent

UT GSBS Dissertations and Theses (Open Access)

Synchronous Ductal Carcinoma in situ (DCIS-IDC) is an early stage breast cancer invasion in which it is possible to delineate genomic evolution during invasion because of the presence of both in situ and invasive regions within the same sample. While laser capture microdissection studies of DCIS-IDC examined the relationship between the paired in situ (DCIS) and invasive (IDC) regions, these studies were either confounded by bulk tissue or limited to a small set of genes or markers. To overcome these challenges, we developed Topographic Single Cell Sequencing (TSCS), which combines laser-catapulting with single cell DNA sequencing to measure genomic copy ...


Trim24 As An Oncogene In The Mammary Gland, Aundrietta Duncan May 2018

Trim24 As An Oncogene In The Mammary Gland, Aundrietta Duncan

UT GSBS Dissertations and Theses (Open Access)

Despite the many advances made in breast cancer research and treatments, breast cancer remains one of the deadliest diseases plaguing women worldwide. While many findings on genetic mutations and their role in predisposing people to breast cancer have been uncovered, we are just beginning to understand the extent to which epigenetic regulators promote tumorigenic phenotypes, metastasis, and chemotherapeutic resistance. Moreover, new experimental tools offer the ability to address questions we were previously unable to assess. My project takes advantage of a new mouse model to understand the role of a proto-oncogenic, transcriptional co-regulator, TRIM24, in mammary gland development and disease ...


Trim24 In Normal & Malignant Hematopoiesis, Justin Shaw May 2018

Trim24 In Normal & Malignant Hematopoiesis, Justin Shaw

UT GSBS Dissertations and Theses (Open Access)

Treatment for acute myeloid leukemia (AML) has changed little in the past four decades. For the majority of AML patients, current treatment options include chemotherapy and allogeneic stem cell transplants, which also involves high-dose chemotherapy or radiation treatment. These options have little success in the long-run, as only an estimated 26% of patients survive five years post-diagnosis. In efforts to address this low survival rate, interest has increased for targeting epigenetic pathways in AML. This focus stems from the discovery that AML is frequently driven by blockades on hematopoietic stem cell differentiation, which involves a series of coordinated epigenetic changes ...


Non-Coding Rnas Identify The Intrinsic Molecular Subtypes Of Muscle-Invasive Bladder Cancer, Andrea E. Ochoa May 2017

Non-Coding Rnas Identify The Intrinsic Molecular Subtypes Of Muscle-Invasive Bladder Cancer, Andrea E. Ochoa

UT GSBS Dissertations and Theses (Open Access)

NON-CODING RNAS IDENTIFY THE INTRINSIC MOLECULAR SUBTYPES OF MUSCLE-INVASIVE BLADDER CANCER

Andrea Elizabeth Ochoa, B.S.

Advisory Professors: David J. McConkey, Ph.D. and Joya Chandra, Ph.D.

There has been a recent explosion of genomics data in muscle-invasive bladder cancer (MIBC) to better understand the underlying biology of the disease that leads to the high amount of heterogeneity that is seen clinically. These studies have identified relatively stable intrinsic molecular subtypes of MIBC that show similarities to the basal and luminal subtypes of breast cancer. However, previous studies have primarily focused on protein-coding genes or DNA mutations/alterations.

There ...


Concomitant Targeting Of The Mtor/Mapk Pathways: Novel Therapeutic Strategy In Subsets Of Non-Small Cell Lung Cancer, Dennis Ruder Dec 2016

Concomitant Targeting Of The Mtor/Mapk Pathways: Novel Therapeutic Strategy In Subsets Of Non-Small Cell Lung Cancer, Dennis Ruder

UT GSBS Dissertations and Theses (Open Access)

Over the last decade, a paradigm-shift in lung cancer therapy has evolved into targeted-driven medicinal approaches. However, patients frequently relapse and develop resistance to available therapies. Herein, we utilized genomic mutation data from advanced chemorefractory non-small cell lung cancer (NSCLC) patients enrolled in the Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE-2) clinical trial to characterize novel actionable genomic alterations potentially of clinical relevance. We identified RICTOR alterations (mutations, amplifications) in 17% of lung adenocarcinomas and found RICTOR expression correlates to worse overall survival. There was enrichment of MAPK pathway genetic aberrations in key oncogenes (e.g. KRAS ...


Genomic Drivers Of Cutaneous Squamous Cell Carcinoma Development, Vida Chitsazzadeh May 2016

Genomic Drivers Of Cutaneous Squamous Cell Carcinoma Development, Vida Chitsazzadeh

UT GSBS Dissertations and Theses (Open Access)

Skin cancer is the most common malignancy in humans. Annually, in U.S. there are over 3 million cases with an estimated overall economic impact of $2 billion. Cutaneous Squamous Cell Carcinoma (cuSCC) comprises 15-20% of all skin cancers. cuSCC has the best-defined progression from a distinct precancerous lesion, the Actinic Keratosis (AK), to invasive cuSCC. Destructive therapies for AK treatment must be used repetitively, causing significant morbidity. There is a tremendous need for targeted diagnostics and therapy for AKs, representing an important opportunity for secondary skin cancer prevention. Our knowledge of the molecular and cellular events that lead to ...


The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan May 2016

The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan

UT GSBS Dissertations and Theses (Open Access)

The transcription factor NF-κB plays a central role in many aspects of biological processes and diseases, such as inflammation and cancer. Although it has been suggested thatNF-κB is critical in tumorigenesis and tumor progression, the molecular mechanism by which NF-κB is activated in solid tumor remains largely unknown. In the current work, we focus on growth factor receptor-induced NF-κB activation and tumor progression, including epidermal growth factor receptor (EGFR)-induced NF-κB in lung cancer and heregulin receptor (HER2)-induced NF-κB in breast cancer. We found that Mucosa-associated lymphoma translocation protein 1 (MALT1), also known as paracaspase, is required for EGFR-induced ...


Investigating The Roles Of P63 And P73 Isoforms To Therapeutically Treat P53-Altered Cancers, Avinashnarayan Venkatanarayan May 2015

Investigating The Roles Of P63 And P73 Isoforms To Therapeutically Treat P53-Altered Cancers, Avinashnarayan Venkatanarayan

UT GSBS Dissertations and Theses (Open Access)

Investigating the roles of p63 & p73 isoforms to therapeutically treat

p53-altered cancers

Avinashnarayan Venkatanarayan, M.S.

Supervisory Professor: Elsa R. Flores, Ph.D.

The TP53 tumor suppressor is mutated in approximately 50% of human cancers rendering cancer therapies ineffective. p53 reactivation suppresses tumor formation in mice. However, this strategy has proven difficult to implement therapeutically. An alternate approach to overcome p53 loss is to manipulate the p53-family members, p63 and p73, which interact and share structural similarities to p53. p63 and p73, unlike p53 are less frequently mutated and have two major isoforms with distinct functions which makes them ...


Igfbp2 Potentiates Egfr-Stat3 Signaling In Glioma, Yingxuan Chua May 2015

Igfbp2 Potentiates Egfr-Stat3 Signaling In Glioma, Yingxuan Chua

UT GSBS Dissertations and Theses (Open Access)

Gliomas are clinically challenging brain tumors with dismal survival rates due to its infiltrative nature and ineffective standard therapy. Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the contributions of intracellular IGFBP2 to tumor development and progression are poorly understood. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of EGFR, which subsequently activates STAT3 signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via ...


Impact Of Differentiation Status Of Kidney Progenitors In Wilms Tumor Development, Le Huang May 2015

Impact Of Differentiation Status Of Kidney Progenitors In Wilms Tumor Development, Le Huang

UT GSBS Dissertations and Theses (Open Access)

Wilms tumor is one of the most common solid tumors in children. It is an embryonic cancer of the kidney and is thought to arise from undifferentiated renal mesenchyme. However, the differentiation status of cells in the mesenchyme that can give rise to Wilms tumors is unknown. Gene expression analysis of a large panel of Wilms tumor patients has identified different subsets of Wilms tumors that are distinct in their clinical outcomes and gene expression signatures. These subsets express specific genes that correspond to different stages of differentiation during renal development, suggesting that Wilms tumors may arise from transformed cells ...


Dna Polymerase Θ (Polq) And The Cellular Defense Against Dna Damage, Matthew J. Yousefzadeh May 2015

Dna Polymerase Θ (Polq) And The Cellular Defense Against Dna Damage, Matthew J. Yousefzadeh

UT GSBS Dissertations and Theses (Open Access)

In mammalian cells, DNA polymerase θ (POLQ) is an unusual specialized DNA polymerase whose in vivo function is under active investigation. The protein is comprised of an N-terminal helicase-like domain, a C-terminal DNA polymerase domain, and a large central domain that spans between the two. This arrangement is also found in the Drosophila Mus308 protein, which helps confer resistance to DNA interstrand crosslinking agents. Homologs of POLQ and Mus308 are found in eukaryotes, including plants, but a comparison of phenotypes suggests that not all of these genes are functional orthologs. Flies with defective Mus308 are sensitive to DNA interstrand crosslinking ...


The Association Between The Il-1 Pathway, Isaac C. Wun May 2014

The Association Between The Il-1 Pathway, Isaac C. Wun

UT GSBS Dissertations and Theses (Open Access)

Cutaneous malignant melanoma (CMM) is a potentially lethal malignancy that warrants attention and further research, as it is known to that there is an increasing rate of incidence in theUnited States, and it is also known that exposure to UV light is its most crucial risk factor, and family history of melanoma is also an important risk factor. Melanoma is an aggressive and lethal cancer in humans. There are an estimated new 132,000 melanoma cases annually worldwide, and the trend has doubled in the past 20 years. However, attempts to treat melanoma have encountered considerable resistance and remained ineffective ...


Modulated Functions Of The Fanconi Anemia Core Complex, Yaling Huang May 2014

Modulated Functions Of The Fanconi Anemia Core Complex, Yaling Huang

UT GSBS Dissertations and Theses (Open Access)

Cells derived from Fanconi anemia (FA) patients are characterized by hypersensitivity to DNA interstrand crosslinks (ICLs), suggesting that FA genes play a role in ICL repair. Fanconi anemia core complex (including A, B, C, E, F, G, L, FAAP20, and FAAP100) activates the Fanconi pathway by providing the essential E3 ligase activity for FANCD2 mono-ubiquitination. Previous studies suggested the existence of three protein-protein interaction groups. However, the functions of most FA core complex protein are still limited to their presence in the complex. How the spatially-defined FANCD2 ubiquitination is accomplished by the core complex remains unknown.

To elucidate the roles ...


Genetic Analysis Of The Hippo Pathway In Mouse Liver, Li Lu Dec 2012

Genetic Analysis Of The Hippo Pathway In Mouse Liver, Li Lu

UT GSBS Dissertations and Theses (Open Access)

Cancer therapy and tumor treatment remain unsolved puzzles. Genetic screening for tumor suppressor genes in Drosophila revealed the Hippo-signaling pathway as a kinase cascade consisting of five core components. Disrupting the pathway by deleting the main component genes breaks the balance of cell proliferation and apoptosis and results in epithelial tissue tumorigenesis. The pathway is therefore believed to be a tumor suppressor pathway. However, a corresponding role in mammals is yet to be determined. Our lab began to investigate the tumor suppression function of the potent mammalian Hippo pathway by putting floxed alleles into the mouse genome flanking the functional-domain-expressing ...


Fancm And Faap24 Maintain Genomic Stability Through Cooperative And Unique Functions, Yucai Wang Dec 2012

Fancm And Faap24 Maintain Genomic Stability Through Cooperative And Unique Functions, Yucai Wang

UT GSBS Dissertations and Theses (Open Access)

Fanconi anemia (FA) is a rare recessive genetic disease with an array of clinical manifestations including multiple congenital abnormalities, progressive bone marrow failure and profound cancer susceptibility. A hallmark of cells derived from FA patients is hypersensitivity to DNA interstrand crosslinking agents such as mitomycin C (MMC) and cisplatin, suggesting that FA- and FA-associated proteins play important roles in protecting cells from DNA interstrand crosslink (ICL) damage. Two genes involved in the FA pathway, FANCM and FAAP24, are of particular interest because they contain DNA interacting domains. However, there are no definitive patient mutations for these two genes, and the ...


Tet1: A Unique Dna Demethylase For Maintenance Of Dna Methylation Pattern, Chunlei Jin Dec 2012

Tet1: A Unique Dna Demethylase For Maintenance Of Dna Methylation Pattern, Chunlei Jin

UT GSBS Dissertations and Theses (Open Access)

DNA methylation at the C5 position of cytosine (5-methylcytosine, 5mC) is a crucial epigenetic modification of the genome and has been implicated in numerous cellular processes in mammals, including embryonic development, transcription, X chromosome inactivation, genomic imprinting and chromatin structure. Like histone modifications, DNA methylation is also dynamic and reversible. However, in contrast to well defined DNA methyltransferases, the enzymes responsible for erasing DNA methylation still remain to be studied. The ten-eleven translocation family proteins (TET1/2/3) were recently identified as Fe(II)/2-oxoglutarate (2OG)-dependent 5mC dioxygenases, which consecutively convert 5mC into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-carboxylcytosine both ...


Identification Of Factors Involved In Dna Methylation Of Cpg-Island-Promoters, Yan Zhang Dec 2011

Identification Of Factors Involved In Dna Methylation Of Cpg-Island-Promoters, Yan Zhang

UT GSBS Dissertations and Theses (Open Access)

Repression of many tumor suppressor genes (TSGs) in cancer is mediated by aberrantly increased DNA methylation levels at promoter CpG islands (CGI). About one-fourth of empirically defined human promoters are surrounded by or contain clustered repetitive elements. It was previously observed that a sharp transition of methylation occurs between highly methylated repetitive elements (SINE or LINE) and unmethylated CGI-promoters (e.g. P16, VHL, CDH and RIL) in normal tissues. The functions that lead to increased CGI methylation in cancer remain poorly understood. We propose that CGI-promoters contain cis-elements for triggering de novo DNA methylation. In the first part of our ...


Downregulation Of Pax2 Suppresses Ovarian Cancer Cell Growth, Huijuan Song Aug 2011

Downregulation Of Pax2 Suppresses Ovarian Cancer Cell Growth, Huijuan Song

UT GSBS Dissertations and Theses (Open Access)

PAX2 is one of nine PAX genes regulating tissue development and cellular differentiation in embryos. PAX2 promotes cell proliferation, oncogenic transformation, cell-lineage specification, migration, and survival. Unattenuated PAX2 has been found in several cancer types. We therefore sought to elucidate the role of PAX2 in ovarian carcinomas. We found that PAX2 was expressed in low-grade serous, clear cell, endometrioid and mucinous cell ovarian carcinomas, which are relatively chemoresistant compared to high grade serous ovarian carcinomas. Four ovarian cancer cell lines, RMUGL (mucinous), TOV21G (clear cell), MDAH-2774 (endometrioid) and IGROV1 (endometrioid), which express high-levels of PAX2, were used to study the ...


The Role And Mechanism Of The Homeobox Gene Dlx4 In Transforming Growth Factor-B Resistance In Cancer, Bon Q. Trinh May 2011

The Role And Mechanism Of The Homeobox Gene Dlx4 In Transforming Growth Factor-B Resistance In Cancer, Bon Q. Trinh

UT GSBS Dissertations and Theses (Open Access)

Transforming growth factor-b (TGF-b) is a cytokine that plays essential roles in regulating embryonic development and tissue homeostasis. In normal cells, TGF-b exerts an anti-proliferative effect. TGF-b inhibits cell growth by controlling a cytostatic program that includes activation of the cyclin-dependent kinase inhibitors p15Ink4B and p21WAF1/Cip1 and repression of c-myc. In contrast to normal cells, many tumors are resistant to the anti-proliferative effect of TGF-b. In several types of tumors, particularly those of gastrointestinal origin, resistance to the anti-proliferative effect of TGF-b has been attributed to TGF-b receptor or Smad mutations. However, these mutations are absent from ...


E2f1 And Tumor Suppression: The Role Of P21, Mirnas, And The Dna Damage Response, Regina L. Weaks Aug 2010

E2f1 And Tumor Suppression: The Role Of P21, Mirnas, And The Dna Damage Response, Regina L. Weaks

UT GSBS Dissertations and Theses (Open Access)

E2F1 is a multi-faceted protein that has roles in a number of important cellular processes including cell cycle regulation, apoptosis, proliferation, and the DNA damage response (DDR). Moreover, E2F1 has opposing roles in tumor development, acting as either a tumor suppressor or an oncogene depending on the context. In human cancer, E2F1 is often deregulated through aberrations in the Rb-p16INK4a-cyclin D1 pathway. In these studies we examined three mechanisms by which E2F1 might mediate its tumor suppressive properties: p21-induced senescence, miRNAs, and the DNA damage response. We found that E2F1 acts as a tumor suppressor in response to ras activation ...


The Consequences Of Disrupting The Mdm2-P53 Balance In Hematopoiesis, Hussein A. Abbas May 2010

The Consequences Of Disrupting The Mdm2-P53 Balance In Hematopoiesis, Hussein A. Abbas

UT GSBS Dissertations and Theses (Open Access)

The bone marrow accommodates hematopoietic stem cells and progenitors. These cells provide an indispensible resource for replenishing the blood constituents throughout an organism’s life. A tissue with such a high turn-over rate mandates intact cycling checkpoint and apoptotic pathways to avoid inappropriate cell proliferation and ultimately the development of leukemias. p53, a major tumor suppressor, is a transcription factor that regulates cell cycle, and induces apoptosis and senescence. Mice inheriting a hypomorphic p53 allele in the absence of Mdm2, a p53 inhibitor, have elevated p53 cell cycle activity and die by postnatal day 13 due to hematopoietic failure. Hematopoiesis ...