Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Cancer Biology

The Alpha6beta4 Integrin Promotes Resistance To Ferroptosis, Caitlin W. Brown, John J. Amante, Hira Lal Goel, Arthur M. Mercurio Dec 2017

The Alpha6beta4 Integrin Promotes Resistance To Ferroptosis, Caitlin W. Brown, John J. Amante, Hira Lal Goel, Arthur M. Mercurio

UMass Metabolic Network Publications

Increases in lipid peroxidation can cause ferroptosis, a form of cell death triggered by inhibition of glutathione peroxidase 4 (GPX4), which catalyzes the reduction of lipid peroxides and is a target of ferroptosis inducers, such as erastin. The alpha6beta4 integrin protects adherent epithelial and carcinoma cells from ferroptosis induced by erastin. In addition, extracellular matrix (ECM) detachment is a physiologic trigger of ferroptosis, which is evaded by alpha6beta4. The mechanism that enables alpha6beta4 to evade ferroptosis involves its ability to protect changes in membrane lipids that are proferroptotic. Specifically, alpha6beta4-mediated activation of Src and STAT3 suppresses expression of ACSL4, an ...


Bivalent Epigenetic Control Of Oncofetal Gene Expression In Cancer, Sayyed K. Zaidi, Seth E. Frietze, Jonathan A. Gordon, Jessica L. Heath, Terri Messier, Deli Hong, Joseph R. Boyd, Mingu Kang, Anthony N. Imbalzano, Jane B. Lian, Janet L. Stein, Gary S. Stein Nov 2017

Bivalent Epigenetic Control Of Oncofetal Gene Expression In Cancer, Sayyed K. Zaidi, Seth E. Frietze, Jonathan A. Gordon, Jessica L. Heath, Terri Messier, Deli Hong, Joseph R. Boyd, Mingu Kang, Anthony N. Imbalzano, Jane B. Lian, Janet L. Stein, Gary S. Stein

UMass Metabolic Network Publications

Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency ...


A Dual Role Of Caspase-8 In Triggering And Sensing Proliferation-Associated Dna Damage, A Key Determinant Of Liver Cancer Development, Yannick Boege, Roger J. Davis, Achim Weber Sep 2017

A Dual Role Of Caspase-8 In Triggering And Sensing Proliferation-Associated Dna Damage, A Key Determinant Of Liver Cancer Development, Yannick Boege, Roger J. Davis, Achim Weber

UMass Metabolic Network Publications

Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in ...


Critical Role For Arginase 2 In Obesity-Associated Pancreatic Cancer, Tamara Zaytouni, Pei-Yun Tsai, Daniel S. Hitchcock, Cory D. Dubois, Elizaveta Freinkman, Lin Lin, Vicente Morales-Oyarvide, Patrick J. Lenehan, Brian M. Wolpin, Mari Mino-Kenudson, Eduardo M. Torres, Nicholas Stylopoulos, Clary B. Clish, Nada Y. Kalaany Aug 2017

Critical Role For Arginase 2 In Obesity-Associated Pancreatic Cancer, Tamara Zaytouni, Pei-Yun Tsai, Daniel S. Hitchcock, Cory D. Dubois, Elizaveta Freinkman, Lin Lin, Vicente Morales-Oyarvide, Patrick J. Lenehan, Brian M. Wolpin, Mari Mino-Kenudson, Eduardo M. Torres, Nicholas Stylopoulos, Clary B. Clish, Nada Y. Kalaany

UMass Metabolic Network Publications

Obesity is an established risk factor for pancreatic ductal adenocarcinoma (PDA). Despite recent identification of metabolic alterations in this lethal malignancy, the metabolic dependencies of obesity-associated PDA remain unknown. Here we show that obesity-driven PDA exhibits accelerated growth and a striking transcriptional enrichment for pathways regulating nitrogen metabolism. We find that the mitochondrial form of arginase (ARG2), which hydrolyzes arginine into ornithine and urea, is induced upon obesity, and silencing or loss of ARG2 markedly suppresses PDA. In vivo infusion of (15)N-glutamine in obese mouse models of PDA demonstrates enhanced nitrogen flux into the urea cycle and infusion of ...


Jak/Stat Pathway Inhibition Overcomes Il7-Induced Glucocorticoid Resistance In A Subset Of Human T-Cell Acute Lymphoblastic Leukemias, C. Delgado-Martin, L. K. Meyer, B. J. Huang, M. S. Zinter, J. V. Nguyen, G. A. Smith, J. Taunton, S. S. Winter, Justine R. Roderick, Michelle A. Kelliher, T. M. Horton, B. L. Wood, D. T. Teachey, M. L. Hermiston May 2017

Jak/Stat Pathway Inhibition Overcomes Il7-Induced Glucocorticoid Resistance In A Subset Of Human T-Cell Acute Lymphoblastic Leukemias, C. Delgado-Martin, L. K. Meyer, B. J. Huang, M. S. Zinter, J. V. Nguyen, G. A. Smith, J. Taunton, S. S. Winter, Justine R. Roderick, Michelle A. Kelliher, T. M. Horton, B. L. Wood, D. T. Teachey, M. L. Hermiston

UMass Metabolic Network Publications

While outcomes for children with T-cell acute lymphoblastic leukemia (T-ALL) have improved dramatically, survival rates for patients with relapsed/refractory disease remain dismal. Prior studies indicate that glucocorticoid (GC) resistance is more common than resistance to other chemotherapies at relapse. In addition, failure to clear peripheral blasts during a prednisone prophase correlates with an elevated risk of relapse in newly diagnosed patients. Here we show that intrinsic GC resistance is present at diagnosis in early thymic precursor (ETP) T-ALLs as well as in a subset of non-ETP T-ALLs. GC-resistant non-ETP T-ALLs are characterized by strong induction of JAK/STAT signaling ...


Differential Involvement Of The Microtubule Cytoskeleton In Insulin Receptor Substrate 1 (Irs-1) And Irs-2 Signaling To Akt Determines The Response To Microtubule Disruption In Breast Carcinoma Cells, Jose Mercado-Matos, Jennifer L. Clark, Andrew J. Piper, Jenny Janusis, Leslie M. Shaw May 2017

Differential Involvement Of The Microtubule Cytoskeleton In Insulin Receptor Substrate 1 (Irs-1) And Irs-2 Signaling To Akt Determines The Response To Microtubule Disruption In Breast Carcinoma Cells, Jose Mercado-Matos, Jennifer L. Clark, Andrew J. Piper, Jenny Janusis, Leslie M. Shaw

UMass Metabolic Network Publications

The insulin receptor substrate (IRS) proteins serve as essential signaling intermediates for the activation of PI3K by both the insulin-like growth factor 1 receptor (IGF-1R) and its close family member, the insulin receptor (IR). Although IRS-1 and IRS-2 share significant homology, they regulate distinct cellular responses downstream of these receptors and play divergent roles in breast cancer. To investigate the mechanism by which signaling through IRS-1 and IRS-2 results in differential outcomes, we assessed the involvement of the microtubule cytoskeleton in IRS-dependent signaling. Treatment with drugs that either stabilize or disrupt microtubules reveal that an intact microtubule cytoskeleton contributes to ...


Runx1 And Breast Cancer, Jose Mercado-Matos, Asia N. Matthew-Onabanjo, Leslie M. Shaw Apr 2017

Runx1 And Breast Cancer, Jose Mercado-Matos, Asia N. Matthew-Onabanjo, Leslie M. Shaw

UMass Metabolic Network Publications

News on: Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition, by Hong et al. Oncotarget. 2017; 8:17610-27. doi: 10.18632/oncotarget.15381.


Mammalian Swi/Snf Enzymes And The Epigenetics Of Tumor Cell Metabolic Reprogramming, Jeffrey A. Nickerson, Qiong Wu, Anthony N. Imbalzano Apr 2017

Mammalian Swi/Snf Enzymes And The Epigenetics Of Tumor Cell Metabolic Reprogramming, Jeffrey A. Nickerson, Qiong Wu, Anthony N. Imbalzano

UMass Metabolic Network Publications

Tumor cells reprogram their metabolism to survive and grow in a challenging microenvironment. Some of this reprogramming is performed by epigenetic mechanisms. Epigenetics is in turn affected by metabolism; chromatin modifying enzymes are dependent on substrates that are also key metabolic intermediates. We have shown that the chromatin remodeling enzyme Brahma-related gene 1 (BRG1), an epigenetic regulator, is necessary for rapid breast cancer cell proliferation. The mechanism for this requirement is the BRG1-dependent transcription of key lipogenic enzymes and regulators. Reduction in lipid synthesis lowers proliferation rates, which can be restored by palmitate supplementation. This work has established BRG1 as ...


Ck2 Inhibitor Cx-4945 Destabilizes Notch1 And Synergizes With Jq1 Against Human T-Acute Lymphoblastic Leukemic Cells, Haiwei Lian, Dun Li, Yun Zhou, Esther Landesman-Bollag, Guanglan Zhang, Nicole M. Anderson, Kevin Charles Tang, Justine E. Roderick, Michelle A. Kelliher, David C. Seldin, Hui Fu, Hui Feng Jan 2017

Ck2 Inhibitor Cx-4945 Destabilizes Notch1 And Synergizes With Jq1 Against Human T-Acute Lymphoblastic Leukemic Cells, Haiwei Lian, Dun Li, Yun Zhou, Esther Landesman-Bollag, Guanglan Zhang, Nicole M. Anderson, Kevin Charles Tang, Justine E. Roderick, Michelle A. Kelliher, David C. Seldin, Hui Fu, Hui Feng

UMass Metabolic Network Publications

Here we show that CK2 inhibition by CX-4945 destabilizes NOTCH1 and synergizes with JQ1 to induce apoptosis in human T-ALL cells, implicating an alternative strategy to target NOTCH1 signaling in refractory/relapsed T-ALL.


Phosphorylation Of The Mdm2 Oncoprotein By The C-Abl Tyrosine Kinase Regulates P53 Tumor Suppression And The Radiosensitivity Of Mice, Michael I. Carr, Justine E. Roderick, Hong Zhang, Bruce A. Woda, Michelle A. Kelliher, Stephen N. Jones Dec 2016

Phosphorylation Of The Mdm2 Oncoprotein By The C-Abl Tyrosine Kinase Regulates P53 Tumor Suppression And The Radiosensitivity Of Mice, Michael I. Carr, Justine E. Roderick, Hong Zhang, Bruce A. Woda, Michelle A. Kelliher, Stephen N. Jones

UMass Metabolic Network Publications

The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present ...


Cancer Metabolism: Fueling More Than Just Growth, Namgyu Lee, Dohoon Kim Dec 2016

Cancer Metabolism: Fueling More Than Just Growth, Namgyu Lee, Dohoon Kim

UMass Metabolic Network Publications

The early landmark discoveries in cancer metabolism research have uncovered metabolic processes that support rapid proliferation, such as aerobic glycolysis (Warburg effect), glutaminolysis, and increased nucleotide biosynthesis. However, there are limitations to the effectiveness of specifically targeting the metabolic processes which support rapid proliferation. First, as other normal proliferative tissues also share similar metabolic features, they may also be affected by such treatments. Secondly, targeting proliferative metabolism may only target the highly proliferating "bulk tumor" cells and not the slower-growing, clinically relevant cancer stem cell subpopulations which may be required for an effective cure. An emerging body of research indicates ...


Runx1 And Foxp3 Interplay Regulates Expression Of Breast Cancer Related Genes, Maria Sol Recouvreux, Esteban Nicolas Grasso, Pablo Christian Echeverria, Luciana Rocha-Viegas, Lucio H. Castilla, Carolina Schere-Levy, Johanna Melisa Tocci, Edith Claudia Kordon, Natalia Rubinstein Feb 2016

Runx1 And Foxp3 Interplay Regulates Expression Of Breast Cancer Related Genes, Maria Sol Recouvreux, Esteban Nicolas Grasso, Pablo Christian Echeverria, Luciana Rocha-Viegas, Lucio H. Castilla, Carolina Schere-Levy, Johanna Melisa Tocci, Edith Claudia Kordon, Natalia Rubinstein

UMass Metabolic Network Publications

Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and ...