Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Genetics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 95

Full-Text Articles in Cancer Biology

Notch Inhibitors And The Bet Inhibitor Jq-1 Decrease The Growth Of Primary Tumor Cells Derived From A Novel Mouse Model Of C11orf95-Rela Induced Brain Tumor, Ericka Randazzo, Jesse Dunnack, Justin Fang, Joseph Loturco Phd May 2019

Notch Inhibitors And The Bet Inhibitor Jq-1 Decrease The Growth Of Primary Tumor Cells Derived From A Novel Mouse Model Of C11orf95-Rela Induced Brain Tumor, Ericka Randazzo, Jesse Dunnack, Justin Fang, Joseph Loturco Phd

University Scholar Projects

Brain tumors are the most common childhood solid malignancy, and because of remarkable advances in treating many cancers outside of the brain, they have become the leading cause of cancer mortality in children. Ependymomas are a class of brain tumors which can be further subdivided into three groups based upon their location and genetic features. Of the three classes, supratentorial ependymomas are the only subgroup known to be marked by an oncogenic driver gene, which consists of a fusion mutation between the C11orf95 and RELA genes. C11orf95-RELA positive tumors are the most aggressive and lethal of ...


Acute Promyelocytic Leukemia: A Case Study Correlating Cytogenetic Abnormality With Prognosis, Alyssa Lamond, Theresa Tellier-Castellone May 2019

Acute Promyelocytic Leukemia: A Case Study Correlating Cytogenetic Abnormality With Prognosis, Alyssa Lamond, Theresa Tellier-Castellone

Senior Honors Projects

Advancements in medical technology today have positively impacted the diagnosis, treatment, and prognosis of cancers. Particularly acute promyelocytic leukemia (APL) has completely improved from having the poorest prognosis to one of the best. Acute promyelocytic leukemia is a malignant disease of hematopoietic tissue classified by WHO as leukemia with >20% blasts from the myeloid lineage, specifically promyelocytes. Determined in 1976, FAB classified AML subtypes M1-M7, with APL being M3. Specific characteristics classify the subtype of AML, with each resulting from a different genetic abnormality. The focus of APL diagnosis, treatment, and prognosis occurs around the known PML-RARα fusion gene. Flow ...


Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan Mar 2019

Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan

COBRA Preprint Series

One of the major goals in large-scale genomic studies is to identify genes with a prognostic impact on time-to-event outcomes which provide insight into the disease's process. With rapid developments in high-throughput genomic technologies in the past two decades, the scientific community is able to monitor the expression levels of tens of thousands of genes and proteins resulting in enormous data sets where the number of genomic features is far greater than the number of subjects. Methods based on univariate Cox regression are often used to select genomic features related to survival outcome; however, the Cox model assumes proportional ...


Supervised Dimension Reduction For Large-Scale "Omics" Data With Censored Survival Outcomes Under Possible Non-Proportional Hazards, Lauren Spirko-Burns, Karthik Devarajan Mar 2019

Supervised Dimension Reduction For Large-Scale "Omics" Data With Censored Survival Outcomes Under Possible Non-Proportional Hazards, Lauren Spirko-Burns, Karthik Devarajan

COBRA Preprint Series

The past two decades have witnessed significant advances in high-throughput ``omics" technologies such as genomics, proteomics, metabolomics, transcriptomics and radiomics. These technologies have enabled simultaneous measurement of the expression levels of tens of thousands of features from individual patient samples and have generated enormous amounts of data that require analysis and interpretation. One specific area of interest has been in studying the relationship between these features and patient outcomes, such as overall and recurrence-free survival, with the goal of developing a predictive ``omics" profile. Large-scale studies often suffer from the presence of a large fraction of censored observations and potential ...


Investigating The Roles Of Tap63 And Tap73 In Cutaneous Squamous Cell Carcinoma And Lung Adenocarcinoma, Andrew J. Davis Aug 2018

Investigating The Roles Of Tap63 And Tap73 In Cutaneous Squamous Cell Carcinoma And Lung Adenocarcinoma, Andrew J. Davis

UT GSBS Dissertations and Theses (Open Access)

TP63 and TP73 (which encode p63 and p73, respectively) are highly conserved transcription factors with important roles in development and tissue homeostasis. Similar to their homolog, p53, both p63 and p73 have been shown to mediate tumor suppression in multiple tissue types. Interestingly, however, both genes are expressed as multiple isoforms, which appear to have different and, in many cases, antagonistic functions. Through the use of isoform-specific null alleles of p63 and p73 our lab and others have shown that the full-length N-terminal isoforms of p63 and p73 (referred to as TAp63 and TAp73, respectively) exhibit distinct functions in development ...


Systematic Pan-Cancer Analysis Of Somatic Allele Frequency, Liam Spurr, Muzi Li, Nawaf Alomran, Qianqian Zhang, Paula Restrepo, Mercedeh Movassagh, Chris Trenkov, Nerissa Tunnessen, Tatiyana Apanasovich, Keith A. Crandall, Nathan Edwards, Anelia Horvath May 2018

Systematic Pan-Cancer Analysis Of Somatic Allele Frequency, Liam Spurr, Muzi Li, Nawaf Alomran, Qianqian Zhang, Paula Restrepo, Mercedeh Movassagh, Chris Trenkov, Nerissa Tunnessen, Tatiyana Apanasovich, Keith A. Crandall, Nathan Edwards, Anelia Horvath

Open Access Articles

Imbalanced expression of somatic alleles in cancer can suggest functional and selective features, and can therefore indicate possible driving potential of the underlying genetic variants. To explore the correlation between allele frequency of somatic variants and total gene expression of their harboring gene, we used the unique data set of matched tumor and normal RNA and DNA sequencing data of 5523 distinct single nucleotide variants in 381 individuals across 10 cancer types obtained from The Cancer Genome Atlas (TCGA). We analyzed the allele frequency in the context of the variant and gene functional features and linked it with changes in ...


Trim24 In Normal & Malignant Hematopoiesis, Justin Shaw May 2018

Trim24 In Normal & Malignant Hematopoiesis, Justin Shaw

UT GSBS Dissertations and Theses (Open Access)

Treatment for acute myeloid leukemia (AML) has changed little in the past four decades. For the majority of AML patients, current treatment options include chemotherapy and allogeneic stem cell transplants, which also involves high-dose chemotherapy or radiation treatment. These options have little success in the long-run, as only an estimated 26% of patients survive five years post-diagnosis. In efforts to address this low survival rate, interest has increased for targeting epigenetic pathways in AML. This focus stems from the discovery that AML is frequently driven by blockades on hematopoietic stem cell differentiation, which involves a series of coordinated epigenetic changes ...


Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal May 2018

Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal

UT GSBS Dissertations and Theses (Open Access)

Altered DICER1 protein levels are associated with developmental disorders, infertility, macular degenerative blindness, aging, and cancer in humans. Recently, post-translational regulation of Dicer1 via phosphorylation has been described in C. elegans. Oscillation of Dicer1 phosphorylation to regulate its activity is essential for germ cell development and embryogenesis in worms. These observations led us to posit that Dicer1 protein levels and activity are under tight regulation for normal mammalian homeostasis. To test whether phosphorylation of Dicer1 regulates its activity in mammals, I generated phospho-mimetic knock-in mouse models by replacing Serines 1712 and 1836 with Aspartic acids individually or together (dual phosphorylation ...


Identification And Utility Of Dna In Exosomes, Paul Kurywchak May 2018

Identification And Utility Of Dna In Exosomes, Paul Kurywchak

UT GSBS Dissertations and Theses (Open Access)

Cancer-associated mortality has been declining for two decades but remains a significant public health problem, especially when patients initially present with advanced disease. Early detection methods have improved survival rates but remain unavailable for a majority of cancers due to a lack of sensitive biomarkers or numerous limitations associated with current diagnosis strategies. Approaches to develop “liquid biopsies” by detecting tumor cells or DNA in the blood have led to several breakthroughs and create the potential for non-invasive, routine assessment of diseases status. However, these biomarkers are rare and currently difficult to isolate, especially in the early stages of disease ...


The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

UT GSBS Dissertations and Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is ...


Using Crispr To Induce A Knock-Out Of Dprl-1 In Drosophila Melanogaster, Alicia Walker Jan 2018

Using Crispr To Induce A Knock-Out Of Dprl-1 In Drosophila Melanogaster, Alicia Walker

Summer Research

Phosphatase of regenerating liver (PRL) is a protein that controls cell processes such as growth and division which has unknown targets. PRL has been found to have both oncogenic and tumor suppressive properties. This study aimed to create a knock out of PRL in Drosohpila melanogaster in order to assess its role in development and in order to illuminate its activity when it is expressed in cancers. We hypothesize that dPRL-1 plays an important role in embryogenesis and that the progeny which lack this gene will be unviable. The CRISPR/Cas9 system was selected as the method in which to ...


Multivariate Analysis To Identify Potential Biomarkers For Prognosis And Treatment Resistance In Head And Neck Cancer Patients, Christina Ann Wicker Jan 2018

Multivariate Analysis To Identify Potential Biomarkers For Prognosis And Treatment Resistance In Head And Neck Cancer Patients, Christina Ann Wicker

Theses and Dissertations--Toxicology and Cancer Biology

It is estimated that nearly 50,000 individuals in the United States will be diagnosed with head and neck cancer in 2017 (American Cancer Society www.cancer.org). Ninety percent of oral cancers are head and neck squamous cell carcinoma (HNSCC). Major obstacles in the treatment of HNSCC are recurrence and treatment resistance, which contributes to increased mortality. Therefore, there is increased need to determine genetic alterations in HNSCC that may be ideal novel drug targets, and biomarkers to improve diagnostic and prognostic testing.

Abnormal localization and overexpression of base excision repair protein and transcriptional regulator Apurinic/Apyrimidic endonuclease (APE1 ...


Unseen Science: Modern Discoveries Too Far Away Or Tiny For Human Eyes, Lucy Huang Dec 2017

Unseen Science: Modern Discoveries Too Far Away Or Tiny For Human Eyes, Lucy Huang

Capstones

As science has progressed, scientists have realized that evidence goes beyond the realms of physical sight. Whether it is too small or difficult to find, scientists have developed different ways to get around this problem. We see this in cancer genomics and in extrasolar planetary research. Scientists use what they know and what they measure to validate their work.

https://lucy-huang-9tge.squarespace.com/


Computational Investigation Of Homologous Recombination Dna Repair Deficiency In Sporadic Breast Cancer, Yue Wang, Matthew H. Ung, Sharon B. Cantor, Chao Cheng Nov 2017

Computational Investigation Of Homologous Recombination Dna Repair Deficiency In Sporadic Breast Cancer, Yue Wang, Matthew H. Ung, Sharon B. Cantor, Chao Cheng

Open Access Articles

BRCAness has important implications in the management and treatment of patients with breast and ovarian cancer. In this study, we propose a computational framework to measure the BRCAness of breast and ovarian tumor samples based on their gene expression profiles. We define a characteristic profile for BRCAness by comparing gene expression differences between BRCA1/2 mutant familial tumors and sporadic breast cancer tumors while adjusting for relevant clinical factors. With this BRCAness profile, our framework calculates sample-specific BRCA scores, which indicates homologous recombination (HR)-mediated DNA repair pathway activity of samples. We found that in sporadic breast cancer high BRCAness ...


The Role Of T-Box Proteins In Vertebrate Germ Layer Formation And Patterning, Sushma Teegala Sep 2017

The Role Of T-Box Proteins In Vertebrate Germ Layer Formation And Patterning, Sushma Teegala

All Dissertations, Theses, and Capstone Projects

All of the tissues in triploblastic organisms, with the exception of the germ cells, arise from the three germ layers, ectoderm, mesoderm and the endoderm. The identification of the genes that underlie the differentiation of these layers is crucial to our understanding of development. T-box family proteins are DNA-binding transcriptional regulators that play important roles during germ layer formation in the early vertebrate embryo. Well-characterized members of this family, including the transcriptional activators Brachyury and VegT, are essential for the proper formation of mesoderm and endoderm, respectively. To date, T-box proteins have not been shown to play a role in ...


Tumor Formation In Response To Loss Of Chromatin Remodeler Chd5 In Zebrafish, Taylor R. Sabato, Erin L. Sorlien, Dr. Joseph P. Ogas Aug 2017

Tumor Formation In Response To Loss Of Chromatin Remodeler Chd5 In Zebrafish, Taylor R. Sabato, Erin L. Sorlien, Dr. Joseph P. Ogas

The Summer Undergraduate Research Fellowship (SURF) Symposium

Chromodomain helicase DNA binding protein 5 (CHD5) has been identified as a tumor suppressor in humans. Deletion or mutation of CHD5 has been observed in numerous cancers, including neuroblastoma and melanoma. We hypothesize that chd5 is also a tumor suppressor in zebrafish, a powerful model system to study tumorigenesis. Many genes involved in tumorigenesis are conserved in zebrafish, and they develop fully penetrant tumor phenotypes. We have created chd5 knock-out zebrafish using CRISPR/Cas9 and are monitoring them for tumor development. In addition to the chd5 knock-outs, we are undertaking a double-mutant approach by coupling loss of ...


Mirna-124-3p Reduces Cell Viability In Cisplatin Resistant Neuroblastoma Cell Models., John Christopher Nolan Jul 2017

Mirna-124-3p Reduces Cell Viability In Cisplatin Resistant Neuroblastoma Cell Models., John Christopher Nolan

PhD theses

Neuroblastoma is a highly heterogeneous disease, responsible for 15 % of paediatric cancer deaths. Acquired drug resistance is a major obstacle in high risk neuroblastoma, making the elucidation of mechanisms in development and modulation of drug resistance essential.

Three drug-resistant models, KellyCis83, CHP212Cis100 and SK-N-ASCis24 were developed previously to elucidate mechanisms involved in cisplatin resistance development.

Cisplatin resistance induces phenotypic changes in neuroblastoma. The aim of this work was to characterise phenotypic and proteomic changes and validate a miRNA capable of regulating the expression of up-regulated genes from proteomic analysis of cisplatin resistant sub-lines.

Proteomic profiling was carried out on the ...


Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee Jan 2017

Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee

Summer Research

Phosphatase of Regenerating Liver (PRL) proteins regulate a number of important cellular processes, including cell growth and division. Humans have three PRL proteins: PRL-1, PRL-2, and PRL-3. An accumulation of evidence has shown that elevated levels of PRLs are strongly correlated with uncontrollable growth and metastasis of tumors. However, contradictory findings have arisen indicating that PRLs instead function to halt cell division thereby preventing uncontrollable tumor growth. In light of these results, the underlying mechanisms regarding how PRLs function within cellular processes remains unclear. To investigate the functions of PRLs, we will create transgenic fruit flies (Drosophila melanogaster) with knockout ...


The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan May 2016

The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan

UT GSBS Dissertations and Theses (Open Access)

The transcription factor NF-κB plays a central role in many aspects of biological processes and diseases, such as inflammation and cancer. Although it has been suggested thatNF-κB is critical in tumorigenesis and tumor progression, the molecular mechanism by which NF-κB is activated in solid tumor remains largely unknown. In the current work, we focus on growth factor receptor-induced NF-κB activation and tumor progression, including epidermal growth factor receptor (EGFR)-induced NF-κB in lung cancer and heregulin receptor (HER2)-induced NF-κB in breast cancer. We found that Mucosa-associated lymphoma translocation protein 1 (MALT1), also known as paracaspase, is required for EGFR-induced ...


Lim Protein Ajuba Participates In The Repression Of Atr-Mediated Dna Damage Response In Human Cells, Sampada Kalan Feb 2016

Lim Protein Ajuba Participates In The Repression Of Atr-Mediated Dna Damage Response In Human Cells, Sampada Kalan

All Dissertations, Theses, and Capstone Projects

LIM proteins constitute a superfamily characterized by the presence of specialized domains called LIM. LIM domain is a unique double-zinc finger motif found in a variety of proteins and is mainly involved in protein-protein interactions. Previous work has implicated that members of the Zyxin subfamily of LIM proteins, namely TRIP6 and LPP are involved in the repression of the DNA damage response (DDR) at telomeres. We further explore if another member from this family has an influence on DDR prevention in the cells. Here, we describe a novel role for Ajuba, a Zyxin family LIM protein, in repressing inappropriate activation ...


Adducins Are Negative Regulators Of Migration And Invasion Of Normal Lung Epithelial Cells And Lung Cancer Cells, Parth Hitenbhai Amin, Parth Amin Jan 2016

Adducins Are Negative Regulators Of Migration And Invasion Of Normal Lung Epithelial Cells And Lung Cancer Cells, Parth Hitenbhai Amin, Parth Amin

Theses and Dissertations

Cell migration is an important component of many physiological and pathological processes such as tissue and organ morphogenesis during development, wound healing, inflammatory immune response, and tumor metastasis. The actin cytoskeleton is the basic engine driving cell migration. In the present study, we elucidate the role of an important actin interacting proteins, Adducins, in motility of normal lung epithelium and lung cancer cells. Adducins are the family of cytoskeleton protein capping the fast growing end and facilitating the bundling of actin filaments. Adducins are encoded by the three closely related genes namely alpha (ADD1), beta (ADD2) and gamma (ADD3) Adducin ...


Homozygous Knockout Of The Piezo1 Gene In The Zebrafish Is Not Associated With Anemia, Boris E. Shmukler, Nicholas C. Huston, Jonathan N. Thon, Chih-Wen Ni, George Kourkoulis, Nathan D. Lawson, Barry H. Paw, Seth L. Alper Dec 2015

Homozygous Knockout Of The Piezo1 Gene In The Zebrafish Is Not Associated With Anemia, Boris E. Shmukler, Nicholas C. Huston, Jonathan N. Thon, Chih-Wen Ni, George Kourkoulis, Nathan D. Lawson, Barry H. Paw, Seth L. Alper

Molecular, Cell and Cancer Biology Publications

We have now examined the erythroid phenotype in this zebrafish strain carrying a ZFN genomic knockout of piezo1. Genotyping was performed as previously described. In contrast to the anemic phenotype observed in zebrafish subjected to morpholino knockdown of piezo, the genomic ZFN knockout of piezo1 did not segregate either with anemia in the 3-dpf embryo or with dysmorphic erythrocyte morphology in the adult fish.


Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu Aug 2015

Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu

Md Mahmudur Rahman

No abstract provided.


Crosstalk Between Brca-Fanconi Anemia And Mismatch Repair Pathways Prevents Msh2-Dependent Aberrant Dna Damage Responses, Min Peng, Jenny X. Xie, Anna J. Ucher, Janet Stavnezer, Sharon B. Cantor Aug 2015

Crosstalk Between Brca-Fanconi Anemia And Mismatch Repair Pathways Prevents Msh2-Dependent Aberrant Dna Damage Responses, Min Peng, Jenny X. Xie, Anna J. Ucher, Janet Stavnezer, Sharon B. Cantor

Janet M. Stavnezer

Several proteins in the BRCA-Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA-FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA-FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is ...


F-Box Protein Fbxo31 Directs Degradation Of Mdm2 To Facilitate P53-Mediated Growth Arrest Following Genotoxic Stress, Sunil K. Malonia, Parul Dutta, Manas Kumar Santra, Michael R. Green Jul 2015

F-Box Protein Fbxo31 Directs Degradation Of Mdm2 To Facilitate P53-Mediated Growth Arrest Following Genotoxic Stress, Sunil K. Malonia, Parul Dutta, Manas Kumar Santra, Michael R. Green

Molecular, Cell and Cancer Biology Publications

The tumor suppressor p53 plays a critical role in maintaining genomic stability. In response to genotoxic stress, p53 levels increase and induce cell-cycle arrest, senescence, or apoptosis, thereby preventing replication of damaged DNA. In unstressed cells, p53 is maintained at a low level. The major negative regulator of p53 is MDM2, an E3 ubiquitin ligase that directly interacts with p53 and promotes its polyubiquitination, leading to the subsequent destruction of p53 by the 26S proteasome. Following DNA damage, MDM2 is degraded rapidly, resulting in increased p53 stability. Because of the important role of MDM2 in modulating p53 function, it is ...


The Creb Coactivator Crtc2 Is A Lymphoma Tumor Suppressor That Preserves Genome Integrity Through Transcription Of Dna Mismatch Repair Genes, Minggang Fang, Magnolia L. Pak, Lynn Chamberlain, Wei Xing, Hongbo Yu, Michael R. Green Jun 2015

The Creb Coactivator Crtc2 Is A Lymphoma Tumor Suppressor That Preserves Genome Integrity Through Transcription Of Dna Mismatch Repair Genes, Minggang Fang, Magnolia L. Pak, Lynn Chamberlain, Wei Xing, Hongbo Yu, Michael R. Green

Molecular, Cell and Cancer Biology Publications

The CREB-regulated transcription coactivator CRTC2 stimulates CREB target gene expression and has a well-established role in modulating glucose and lipid metabolism. Here, we find, unexpectedly, that loss of CRTC2, as well as CREB1 and its coactivator CREB-binding protein (CBP), results in a deficiency in DNA mismatch repair (MMR) and a resultant increased mutation frequency. We show that CRTC2, CREB1, and CBP are transcriptional activators of well-established MMR genes, including EXO1, MSH6, PMS1, and POLD2. Mining of expression profiling databases and analysis of patient samples reveal that CRTC2 and its target MMR genes are downregulated in specific T cell lymphoma subtypes ...


Mien1 Drives Breast Cancer Invasion By Regulating Cytoskeletal-Focal Adhesions Dynamics, Marilyne F. Kpetemey B.S. May 2015

Mien1 Drives Breast Cancer Invasion By Regulating Cytoskeletal-Focal Adhesions Dynamics, Marilyne F. Kpetemey B.S.

Theses and Dissertations

In the recent years, Migration and Invasion Enhancer 1(MIEN1) has emerged as a potential biomarker and a plausible target in breast cancer. Located in the 17q12-21 region of the human chromosome, next to the Her-2/neu loci, MIEN1 presents a robust expression in breast carcinomas; however is completely absent or low in the normal tissues. MIEN1 is post-translationally modified by geranyl-geranyl transferase-I (GgtaseI), which adds isoprenyl group to the carboxyl-terminal of the protein. Prenylated MIEN1 then associates with the inner leaflet of the plasma membrane and acts as an adaptor protein triggering downstream signaling through the Akt/NF-kB axis ...


Investigating The Roles Of P63 And P73 Isoforms To Therapeutically Treat P53-Altered Cancers, Avinashnarayan Venkatanarayan May 2015

Investigating The Roles Of P63 And P73 Isoforms To Therapeutically Treat P53-Altered Cancers, Avinashnarayan Venkatanarayan

UT GSBS Dissertations and Theses (Open Access)

Investigating the roles of p63 & p73 isoforms to therapeutically treat

p53-altered cancers

Avinashnarayan Venkatanarayan, M.S.

Supervisory Professor: Elsa R. Flores, Ph.D.

The TP53 tumor suppressor is mutated in approximately 50% of human cancers rendering cancer therapies ineffective. p53 reactivation suppresses tumor formation in mice. However, this strategy has proven difficult to implement therapeutically. An alternate approach to overcome p53 loss is to manipulate the p53-family members, p63 and p73, which interact and share structural similarities to p53. p63 and p73, unlike p53 are less frequently mutated and have two major isoforms with distinct functions which makes them ...


Dna Polymerase Θ (Polq) And The Cellular Defense Against Dna Damage, Matthew J. Yousefzadeh May 2015

Dna Polymerase Θ (Polq) And The Cellular Defense Against Dna Damage, Matthew J. Yousefzadeh

UT GSBS Dissertations and Theses (Open Access)

In mammalian cells, DNA polymerase θ (POLQ) is an unusual specialized DNA polymerase whose in vivo function is under active investigation. The protein is comprised of an N-terminal helicase-like domain, a C-terminal DNA polymerase domain, and a large central domain that spans between the two. This arrangement is also found in the Drosophila Mus308 protein, which helps confer resistance to DNA interstrand crosslinking agents. Homologs of POLQ and Mus308 are found in eukaryotes, including plants, but a comparison of phenotypes suggests that not all of these genes are functional orthologs. Flies with defective Mus308 are sensitive to DNA interstrand crosslinking ...


Resistance To Therapy In Brca2 Mutant Cells Due To Loss Of The Nucleosome Remodeling Factor Chd4, Shawna S. Guillemette, Ryan W. Serra, Min Peng, Janelle A. Hayes, Panagiotis A. Konstantinopoulos, Michael R. Green, Sharon B. Cantor Mar 2015

Resistance To Therapy In Brca2 Mutant Cells Due To Loss Of The Nucleosome Remodeling Factor Chd4, Shawna S. Guillemette, Ryan W. Serra, Min Peng, Janelle A. Hayes, Panagiotis A. Konstantinopoulos, Michael R. Green, Sharon B. Cantor

Molecular, Cell and Cancer Biology Publications

Hereditary cancers derive from gene defects that often compromise DNA repair. Thus, BRCA-associated cancers are sensitive to DNA-damaging agents such as cisplatin. The efficacy of cisplatin is limited, however, by the development of resistance. One cisplatin resistance mechanism is restoration of homologous recombination (HR), which can result from BRCA reversion mutations. However, in BRCA2 mutant cancers, cisplatin resistance can occur independently of restored HR by a mechanism that remains unknown. Here we performed a genome-wide shRNA screen and found that loss of the nucleosome remodeling factor CHD4 confers cisplatin resistance. Restoration of cisplatin resistance is independent of HR but correlates ...