Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Cancer Biology

Pyruvate Kinase Isoform M2 Influences Autophagy And Related Processes In Hepatocellular Carcinoma Cells, Matthew Lin May 2018

Pyruvate Kinase Isoform M2 Influences Autophagy And Related Processes In Hepatocellular Carcinoma Cells, Matthew Lin

University Scholar Projects

Hepatocellular carcinoma (HCC) is the most common form of liver cancer that affects ~14 million people in the world. Like all cancers, HCC is a disease that arises from unstinted cellular growth initiated by genetic alterations, metabolic changes, and dysregulation in key cellular pathways. Of interest is the relationship between metabolism and cell proliferation/degradation for therapeutic targeting. Pyruvate kinase M2 is a dimeric, glycolytically inactive isoform of the final enzyme involved in glycolysis, that is often upregulated in cancerous tissue. It is thought that the enzymatic function of PKM2 outside of glycolysis contributes to the biosynthesis of anabolic intermediates ...


Mechanisms Underlying The Sensitivity And Resistance Of Gastric Cancer Cells To Met Inhibitors, Rebecca Schroeder Aug 2017

Mechanisms Underlying The Sensitivity And Resistance Of Gastric Cancer Cells To Met Inhibitors, Rebecca Schroeder

UT GSBS Dissertations and Theses (Open Access)

MET amplification has been clinically credentialed as a therapeutic target in gastric cancer, but the molecular mechanisms underlying sensitivity and resistance to MET inhibitors are still not well understood. Using whole-genome mRNA expression profiling, we identified autophagy as a top molecular pathway that was activated by the MET inhibitor crizotinib in drug-sensitive human gastric cancer cells, and functional studies confirmed that crizotinib increased autophagy levels in the drug sensitive cells in a concentration-dependent manner. We then used chemical and molecular approaches to inhibit autophagy in order to define its role in cell death. The clinically available inhibitor of autophagy, chloroquine ...


The Role Of The Diras Family Members In Regulating Ras Function, Cancer Growth And Autophagy, Margie Nicole Sutton May 2017

The Role Of The Diras Family Members In Regulating Ras Function, Cancer Growth And Autophagy, Margie Nicole Sutton

UT GSBS Dissertations and Theses (Open Access)

DIRAS3 is a maternally imprinted tumor suppressor gene that is downregulated by multiple mechanisms across several tumor types. When re-expressed, DIRAS3 decreases proliferation, inhibits motility, and induces autophagy and tumor dormancy. DIRAS3 encodes a 26 kDa small GTPase with 60% homology to Ras and Rap, differing from oncogenic Ras family members by a 34-amino acid N-terminal extension that is required for its tumor suppressive function in ovarian cancer. By assessing the structure-function relationship, I found that DIRAS3 inhibits Ras-induced transformation and is a natural antagonist of Ras/MAPK signaling. DIRAS3 binds directly to Ras and disrupts cluster formation inhibiting the ...


Strategies To Sensitize Bladder Cancer Cells To Small Molecule Inhibitors Targeting The Pi3k Pathway, Giovanni Nitti Aug 2014

Strategies To Sensitize Bladder Cancer Cells To Small Molecule Inhibitors Targeting The Pi3k Pathway, Giovanni Nitti

UT GSBS Dissertations and Theses (Open Access)

After many years of cancer research, it is well accepted by the scientific community that the future cure for this disease lies in a personalized therapeutic approach. Anticipating therapeutic outcome based on the genetic signature of a tumor has become the new paradigm. The PI3K pathway represents an ideal target for bladder cancer, as many of the key proteins of this pathway are altered or mutated in this particular type of cancer. Several small molecule inhibitors have been developed to target this pathway, but their efficacy has been shown to be heterogeneous among different cell lines and mostly cytostatic but ...


Analysis Of The Role Of Two Autophagy Pathway Related Genes, Becn1 And Tsc1, In Murine Mammary Gland Development And Differentiation, Amber N. Hale Jan 2014

Analysis Of The Role Of Two Autophagy Pathway Related Genes, Becn1 And Tsc1, In Murine Mammary Gland Development And Differentiation, Amber N. Hale

Theses and Dissertations--Biology

The mammary gland is a dynamic organ that undergoes the majority of its development in the postnatal period in four stages; mature virgin, pregnancy, lactation, and involution. Every stage relies on tightly regulated cellular proliferation, programmed cell death, and tissue remodeling mechanisms. Misregulation of autophagy, an intracellular catabolic process to maintain energy stores, has long been associated with mammary tumorigenesis and other pathologies. We hypothesize that appropriate regulation and execution of autophagy are necessary for proper development of the mammary ductal tree and maintenance of the secretory epithelia during late pregnancy and lactation. To test this hypothesis we examined the ...