Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 31 - 60 of 12655

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss Sep 2019

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

All Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine ...


Renal Specific Rnai Delivery By Fibrillar Nanoparticle Excipients, Sam Wong Sep 2019

Renal Specific Rnai Delivery By Fibrillar Nanoparticle Excipients, Sam Wong

All Dissertations, Theses, and Capstone Projects

RNA interference (RNAi) is a powerful tool to manipulate the phenotype of an organism by silencing the expression of specific genes and is viewed as a highly promising platform for treating undruggable targets and disorders where small molecule drugs and antibodies would fail. However, development of RNAi based therapies has faced major barriers including cellular and tissue-specific uptake of the Small Interfering RNA (siRNA). Utilizing different nanoparticles as RNAi excipients, cellular uptake and gene silencing potency can be greatly improved. The research in Dr. McDevitt groups has fibrillar carbon nanotubes (CNT) as carriers for siRNA for gene silencing in vitro ...


Engineering Of Escherichia Coli 2-Oxoglutarate Dehydrogenase Complex With Mechanistic And Synthetic Goals, Joydeep Chakraborty Aug 2019

Engineering Of Escherichia Coli 2-Oxoglutarate Dehydrogenase Complex With Mechanistic And Synthetic Goals, Joydeep Chakraborty

Dissertations

The Escherichia coli 2-oxoglutarate dehydrogenase complex (OGDHc) compromises multiple copies of three enzymes - 2-oxoglutarate dehydrogenase (E1o), dihydrolipoyl succinyltransferase (E2o), and dihydrolipoyl dehydrogenase (E3). OGDHc is found in the Krebs cycle and catalyzes the formation of the all-important succinyl-Coenzyme A (succinyl-CoA). OGDHc was engineered to understand the catalytic mechanism and optimized for chemical synthetic goals.

Succinyl-CoA formation takes place within the catalytic domain of E2o via a transesterification reaction. The succinyl group from the thiol ester of S8-succinyldihydrolipoyl-E2o is transferred to the thiol group of CoA. Mechanistic studies were designed to investigate enzymatic transthioesterification. His375 and Asp374 was shown to be ...


A Unified Encyclopedia Of Human Functional Dna Elements Through Fully Automated Annotation Of 164 Human Cell Types, Maxwell W. Libbrecht, Oscar L. Rodriguez, Zhiping Weng, Jeffrey A. Bilmes, Michael M. Hoffman, William Stafford Noble Aug 2019

A Unified Encyclopedia Of Human Functional Dna Elements Through Fully Automated Annotation Of 164 Human Cell Types, Maxwell W. Libbrecht, Oscar L. Rodriguez, Zhiping Weng, Jeffrey A. Bilmes, Michael M. Hoffman, William Stafford Noble

Open Access Articles

Semi-automated genome annotation methods such as Segway take as input a set of genome-wide measurements such as of histone modification or DNA accessibility and output an annotation of genomic activity in the target cell type. Here we present annotations of 164 human cell types using 1615 data sets. To produce these annotations, we automated the label interpretation step to produce a fully automated annotation strategy. Using these annotations, we developed a measure of the importance of each genomic position called the "conservation-associated activity score." We further combined all annotations into a single, cell type-agnostic encyclopedia that catalogs all human regulatory ...


Metnet: Systems Biology Tools For Arabidopsis, Eve Syrkin Wurtele, Ling Li, Dan Berleant, Dianne Cook, Julie A. Dickerson, Jing Ding, Heike Hofmann, Michael Lawrence, Eun-Kyung Lee, Jie Li, Wieslawa Mentzen, Leslie Miller, Basil J. Nikolau, Nick Ransom, Yingjun Wang Aug 2019

Metnet: Systems Biology Tools For Arabidopsis, Eve Syrkin Wurtele, Ling Li, Dan Berleant, Dianne Cook, Julie A. Dickerson, Jing Ding, Heike Hofmann, Michael Lawrence, Eun-Kyung Lee, Jie Li, Wieslawa Mentzen, Leslie Miller, Basil J. Nikolau, Nick Ransom, Yingjun Wang

Ling Li

MetNet (http://metnetdb.org) is an emerging open-source software platform for exploration of disparate experimental data types and regulatory and metabolic networks in the context of Arabidopsis systems biology. The MetNet platform features graph visualization, interactive displays, graph theoretic computations for determining biological distances, a unique multivariate display and statistical analysis tool, graph modeling using the open source statistical analysis language, R, and versatile text mining. The use of these tools is illustrated with data from the bio1 mutant of Arabidopsis.


Early Warning Of Global Change Effects On Catchment Nutrient Exports, Haibin Dong Aug 2019

Early Warning Of Global Change Effects On Catchment Nutrient Exports, Haibin Dong

Electronic Thesis and Dissertation Repository

Global change scientists seek sentinels of change. On forested landscapes, first-order catchments serve as sentinels of global stressors and their effects on downstream surface waters. Here, I explored global stressors – including climate warming, hydrological intensification, and recovery from atmospheric acidic deposition – and their effects on nutrient exports in 22-year stream chemistry records from 41 forested first-order catchments in a network of North American long-term monitoring sites. First, I used multivariate autoregressive models to establish relationships between changes in global stressors and changes in catchment nutrient exports. Second, I analyzed the residuals of these relationships to determine if there was evidence ...


Spectroscopic Description Of The E1 State Of Mo Nitrogenase Based On Mo And Fe X‑Ray Absorption And MöSsbauer Studies, Casey Van Stappen, Roman Davydov, Zhi-Yong Yang, Ruixi Fan, Yisong Guo, Eckhard Bill, Lance C. Seefeldt, Brian M. Hoffman, Serena Debeer Aug 2019

Spectroscopic Description Of The E1 State Of Mo Nitrogenase Based On Mo And Fe X‑Ray Absorption And MöSsbauer Studies, Casey Van Stappen, Roman Davydov, Zhi-Yong Yang, Ruixi Fan, Yisong Guo, Eckhard Bill, Lance C. Seefeldt, Brian M. Hoffman, Serena Debeer

Chemistry and Biochemistry Faculty Publications

Mo nitrogenase (N2ase) utilizes a two-component protein system, the catalytic MoFe and its electron-transfer partner FeP, to reduce atmospheric dinitrogen (N2) to ammonia (NH3). The FeMo cofactor contained in the MoFe protein serves as the catalytic center for this reaction and has long inspired model chemistry oriented toward activating N2. This field of chemistry has relied heavily on the detailed characterization of how Mo N2ase accomplishes this feat. Understanding the reaction mechanism of Mo N2ase itself has presented one of the most challenging problems in bioinorganic chemistry because of the ephemeral nature of its catalytic intermediates, which ...


Mechanism For Apobec3g Catalytic Exclusion Of Rna And Non-Substrate Dna, William C. Solomon, Wazo Myint, Shurong Hou, Tapan Kanai, Rashmi Tripathi, Nese Kurt Yilmaz, Celia A. Schiffer, Hiroshi Matsuo Aug 2019

Mechanism For Apobec3g Catalytic Exclusion Of Rna And Non-Substrate Dna, William C. Solomon, Wazo Myint, Shurong Hou, Tapan Kanai, Rashmi Tripathi, Nese Kurt Yilmaz, Celia A. Schiffer, Hiroshi Matsuo

Schiffer Lab Publications

The potent antiretroviral protein APOBEC3G (A3G) specifically targets and deaminates deoxycytidine nucleotides, generating deoxyuridine, in single stranded DNA (ssDNA) intermediates produced during HIV replication. A non-catalytic domain in A3G binds strongly to RNA, an interaction crucial for recruitment of A3G to the virion; yet, A3G displays no deamination activity for cytidines in viral RNA. Here, we report NMR and molecular dynamics (MD) simulation analysis for interactions between A3Gctd and multiple substrate or non-substrate DNA and RNA, in combination with deamination assays. NMR ssDNA-binding experiments revealed that the interaction with residues in helix1 and loop1 (T201-L220) distinguishes the binding mode of ...


Egfp Insertional Mutagenesis Reveals Multiple Fxr2p Fibrillar States With Differing Ribosome Association In Neurons, Emily E. Stackpole, Michael R. Akins, Mariya Ivshina, Anastasia C. Murthy, Nicolas L. Fawzi, Justin R. Fallon Aug 2019

Egfp Insertional Mutagenesis Reveals Multiple Fxr2p Fibrillar States With Differing Ribosome Association In Neurons, Emily E. Stackpole, Michael R. Akins, Mariya Ivshina, Anastasia C. Murthy, Nicolas L. Fawzi, Justin R. Fallon

Open Access Articles

RNA-binding proteins (RBPs) function in higher-order assemblages such as RNA granules to regulate RNA localization and translation. The Fragile X homolog FXR2P is an RBP essential for formation of neuronal Fragile X granules that associate with axonal mRNA and ribosomes in the intact brain. However, the FXR2P domains important for assemblage formation in a cellular system are unknown. Here we used an EGFP insertional mutagenesis approach to probe for FXR2P intrinsic features that influence its structural states. We tested 18 different in-frame FXR2P(EGFP) fusions in neurons and found that the majority did not impact assemblage formation. However, EGFP insertion ...


Hsp90/Axl/Eif4e-Regulated Unfolded Protein Response As An Acquired Vulnerability In Drug-Resistant Kras-Mutant Lung Cancer, Haitang Yang, Shun-Qing Liang, Duo Xu, Zhang Yang, Thomas M. Marti, Yanyun Gao, Gregor J. Kocher, Heng Zhao, Ralph A. Schmid, Ren-Wang Peng Aug 2019

Hsp90/Axl/Eif4e-Regulated Unfolded Protein Response As An Acquired Vulnerability In Drug-Resistant Kras-Mutant Lung Cancer, Haitang Yang, Shun-Qing Liang, Duo Xu, Zhang Yang, Thomas M. Marti, Yanyun Gao, Gregor J. Kocher, Heng Zhao, Ralph A. Schmid, Ren-Wang Peng

Open Access Articles

Drug resistance and tumor heterogeneity are formidable challenges in cancer medicine, which is particularly relevant for KRAS-mutant cancers, the epitome of malignant tumors recalcitrant to targeted therapy efforts and first-line chemotherapy. In this study, we delineate that KRAS-mutant lung cancer cells resistant to pemetrexed (MTA) and anti-MEK drug trametinib acquire an exquisite dependency on endoplasmic reticulum (ER) stress signaling, rendering resistant cancer cells selectively susceptible to blockage of HSP90, the receptor tyrosine kinase AXL, the eukaryotic translation initiation factor 4E (eIF4E), and the unfolded protein response (UPR). Mechanistically, acquisition of drug resistance enables KRAS-mutant lung cancer cells to bypass canonical ...


Promotion Of Adipogenesis By Jmjd6 Requires The At Hook-Like Domain And Is Independent Of Its Catalytic Function, Pablo Reyes-Gutierrez, Jake W. Carrasquillo-Rodriguez, Anthony N. Imbalzano Aug 2019

Promotion Of Adipogenesis By Jmjd6 Requires The At Hook-Like Domain And Is Independent Of Its Catalytic Function, Pablo Reyes-Gutierrez, Jake W. Carrasquillo-Rodriguez, Anthony N. Imbalzano

Open Access Articles

JMJD6 is a member of the Jumonji C domain containing enzymes that demethylate and/or hydroxylate substrate proteins. It is a multi-functional protein that has been implicated in disparate aspects of transcriptional and post-transcriptional control of gene expression, including but not limited to enhancer and promoter binding, release of paused RNA polymerase II, control of splicing, and interaction with the translation machinery. JMJD6 contributes to multiple aspects of animal development, including adipogenesis modeled in culture. We mutated proposed or characterized domains in the JMJD6 protein to better understand the requirement for JMJD6 in adipogenic differentiation. Mutation of JMJD6 amino acids ...


Trophic Upgrading And Mobilization Of Wax Esters In Microzooplankton, Keyana Roohani, Brad A. Haubrich, Kai-Lou Yue, Nigel D'Souza, Amanda Mantalbano, Tatiana Rynearson, Susanne Menden-Deuer, Christopher Reid Aug 2019

Trophic Upgrading And Mobilization Of Wax Esters In Microzooplankton, Keyana Roohani, Brad A. Haubrich, Kai-Lou Yue, Nigel D'Souza, Amanda Mantalbano, Tatiana Rynearson, Susanne Menden-Deuer, Christopher Reid

Science and Technology Faculty Journal Articles

Heterotrophic protists play pivotal roles in aquatic ecosystems by transferring matter and energy, including lipids, from primary producers to higher trophic predators. Using Oxyrrhis marina as a model organism, changes to the non-saponifiable protist lipids were investigated under satiation and starvation conditions. During active feeding on the alga Cryptomonas sp., the O. marina hexane soluble non-saponifiable fraction lipid profile reflected its food source with the observed presence of long chain mono-unsaturated fatty alcohols up to C25:1. Evidence of trophic upgrading in O. marina was observed with long chain mono-unsaturated fatty alcohol accumulation of up to C35:1. To the ...


Assessing The Structure-Function Relationships Of The Apolipoprotein(A) Kringle Iv Sub-Type 10 Domain, Matthew J. Borrelli Aug 2019

Assessing The Structure-Function Relationships Of The Apolipoprotein(A) Kringle Iv Sub-Type 10 Domain, Matthew J. Borrelli

Electronic Thesis and Dissertation Repository

Elevated plasma lipoprotein(a) (Lp(a)) is the most prevalent heritable risk factor in the development of cardiovascular disease. The apolipoprotein(a) (apo(a)) component of Lp(a) is strongly implicated in the pathogenicity of Lp(a). It is hypothesized that the inflammatory potential of Lp(a)/apo(a) is mediated by the lysine binding ability of the apo(a) kringle IV10 (KIV10) domain, along with its covalently bound oxidized phospholipid (oxPL). Using targeted mutagenesis, two novel null alleles for the LPA gene that generate non-secretable apo(a) species have been identified, resulting from amino acid substitutions in the KIV10 ...


Monocyte Mri Relaxation Rates Are Regulated By Extracellular Iron And Hepcidin, Praveen S.B Dassanayake Aug 2019

Monocyte Mri Relaxation Rates Are Regulated By Extracellular Iron And Hepcidin, Praveen S.B Dassanayake

Electronic Thesis and Dissertation Repository

Monocytes are an important immune cell type in chronic inflammatory conditions like atherosclerosis and heart failure. The increase in number of monocytes released to the peripheral blood circulation, the differentiation of monocytes to macrophages, and the presence of different macrophage subpopulations during pro- and anti-inflammatory stages of tissue injury may provide markers for monitoring inflammation. In particular, changes in monocyte iron metabolism during an inflammatory response may increase the possibility of tracking these immune cells non-invasively using magnetic resonance imaging (MRI). When secretion of the polypeptide hormone hepcidin is stimulated during inflammation, it binds the iron export protein ferroportin (FPN ...


Structural And Functional Characterization Of Deinococcal Dna Damage Response A (Ddra), Filip Todorovic Aug 2019

Structural And Functional Characterization Of Deinococcal Dna Damage Response A (Ddra), Filip Todorovic

Electronic Thesis and Dissertation Repository

Deinococci exhibit a remarkable resilience toward DNA damage through the actions of several unique proteins, including DdrA. Although DdrA is critical for damage resistance, little is known about its mechanism of action. Despite sharing sequence similarity with Rad52, DdrA has been reported to lack single-stranded DNA annealing activity. In order to better characterize DdrA, structural studies were undertaken with the primary objective of gaining insight into the mechanism by which DdrA functions. Significant progress was made toward elucidating the X-ray crystal structure; in particular, identifying suitable DdrA domain boundaries for successful expression, purification and crystallization. In addition, we demonstrate for ...


An Attenuated Zika Virus Encoding Non-Glycosylated Envelope (E) And Non-Structural Protein 1 (Ns1) Confers Complete Protection Against Lethal Challenge In A Mouse Model, Arun S. Annamalai, Aryamav Pattnaik, Bikash R. Sahoo, Zack P. Guinn, Brianna L. Bullard, Eric A. Weaver, David J. Steffen, Sathish Kumar Natarajan, Thomas M. Petro, Asit K. Pattnaik Aug 2019

An Attenuated Zika Virus Encoding Non-Glycosylated Envelope (E) And Non-Structural Protein 1 (Ns1) Confers Complete Protection Against Lethal Challenge In A Mouse Model, Arun S. Annamalai, Aryamav Pattnaik, Bikash R. Sahoo, Zack P. Guinn, Brianna L. Bullard, Eric A. Weaver, David J. Steffen, Sathish Kumar Natarajan, Thomas M. Petro, Asit K. Pattnaik

Papers in Veterinary and Biomedical Science

Zika virus (ZIKV), a mosquito-transmitted flavivirus, emerged in the last decade causing serious human diseases, including congenital microcephaly in newborns and Guillain-Barré syndrome in adults. Although many vaccine platforms are at various stages of development, no licensed vaccines are currently available. Previously, we described a mutant MR766 ZIKV (m2MR) bearing an E protein mutation (N154A) that prevented its glycosylation, resulting in attenuation and defective neuroinvasion. To further attenuate m2MR for its potential use as a live viral vaccine, we incorporated additional mutations into m2MR by substituting the asparagine residues in the glycosylation sites (N130 and N207) of NS1 with alanine ...


Janani Subramaniam Thesis.Pdf, Janani Subramaniam Aug 2019

Janani Subramaniam Thesis.Pdf, Janani Subramaniam

Janani Subramaniam

Distinctly organized domains of receptors, ion channels, transporters, signaling molecules, cell adhesion molecules, and contractile proteins are crucial to cardiac function. Interactions between adaptor proteins such as ankyrins and cytoskeletal proteins such as obscurin play a pivotal role in organizing these functional domains in cardiomyocytes. Therefore, dysfunction of both ankyrin as well as obscurin lead to a host of cardiovascular diseases such as arrhythmias and cardiomyopathies. Alternative splicing of ankyrin yields numerous isoforms that interact with obscurin at various sub-cellular domains. And while some of these obscurin-ankyrin complexes have been studied, many others have not been characterized. Further, previous studies ...


Insulin Receptor Substrate-1 (Irs-1) And Irs-2 Expression Levels Are Associated With Prognosis In Non-Small Cell Lung Cancer (Nsclc), Andrew J. Piper, Jennifer L. Clark, Jose R. Mercado-Matos, Asia N. Matthew-Onabanjo, Chung-Cheng Hsieh, Ali Akalin, Leslie M. Shaw Aug 2019

Insulin Receptor Substrate-1 (Irs-1) And Irs-2 Expression Levels Are Associated With Prognosis In Non-Small Cell Lung Cancer (Nsclc), Andrew J. Piper, Jennifer L. Clark, Jose R. Mercado-Matos, Asia N. Matthew-Onabanjo, Chung-Cheng Hsieh, Ali Akalin, Leslie M. Shaw

Open Access Articles

The insulin-like growth factor-1 (IGF-1) signaling pathway has been implicated in non-small cell lung cancer (NSCLC) outcomes and resistance to targeted therapies. However, little is known regarding the molecular mechanisms by which this pathway contributes to the biology of NSCLC. The insulin receptor substrate (IRS) proteins are cytoplasmic adaptor proteins that signal downstream of the IGF-1R and determine the functional outcomes of this signaling pathway. In this study, we assessed the expression patterns of IRS-1 and IRS-2 in NSCLC to identify associations between IRS-1 and IRS-2 expression levels and survival outcomes in the two major histological subtypes of NSCLC, adenocarcinoma ...


Parallel Multipole Expansion Algorithms And Their Biology Applications, Jiahui Chen Aug 2019

Parallel Multipole Expansion Algorithms And Their Biology Applications, Jiahui Chen

Mathematics Theses and Dissertations

N-body pairwise interactions are ubiquitous in scientific areas such as astrophysics, fluids mechanics, electrical engineering, molecular biology, etc. Computing these interactions using direct sum of an O(N) cost is expensive, whereas multipole expansion methods, such as the fast multipole method (FMM) or treecode, can reduce the cost to O(N) or O(N log N). This thesis focuses on developing numerical algorithms of Cartesian FMM and treecode, as well as using these algorithms to directly or implicitly solve biological problems involving pairwise interactions. This thesis consists of the following topics. 1) A cyclic parallel scheme is developed to handle ...


Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu Aug 2019

Investigation Of The Electrode Polarization Effect For Biosensor Applications, Anil Koklu

Mechanical Engineering Research Theses and Dissertations

My research focuses on electrokinetic transport. Particularly, in this dissertation, we focus on fabrication and testing of micro electrodes with nanostructured surfaces to minimize the electrode polarization (EP) effects for biosensor applications. In the first study, electrochemical deposition of gold nanoparticles on to planar gold electrodes was used to generate rough surfaces. Dendritic nanostructures that reduced EP up to two orders of magnitude was obtained by optimizing the deposition conditions. These structures also enhanced dielectrophoresis (DEP) response of our bio-chips, making them usable in physiological buffers. In further studies we discovered a universal scaling of EP in the frequency domain ...


Iron-Sulfur Cluster Assembly; In Vivo Analysis Of The Methanogenic Suf System, Evan Dunkle Aug 2019

Iron-Sulfur Cluster Assembly; In Vivo Analysis Of The Methanogenic Suf System, Evan Dunkle

LSU Master's Theses

Iron-sulfur (Fe-S) clusters are among the most ancient and prevalent of all biological cofactors. Their assembly into associated proteins is a tightly regulated process with many organisms employing multiple cluster assembly pathways. Much is known about Fe-S cluster assembly in aerobic organisms such as Escherichia coli (E. coli) but little is known in regards to cluster assembly in more ancient organisms such as methanogens. Methanogens are members of the domain of Archaea and are defined by their ability to generate methane as a byproduct of their main energy generating pathway. Methanogens also have significantly higher Fe-S cluster content compared to ...


Effects Of Halogen, Chalcogen, Pnicogen, And Tetrel Bonds On Ir And Nmr Spectra, Jia Lu, Steve Scheiner Aug 2019

Effects Of Halogen, Chalcogen, Pnicogen, And Tetrel Bonds On Ir And Nmr Spectra, Jia Lu, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

Complexes were formed pairing FX, FHY, FH2Z, and FH3T (X = Cl, Br, I; Y = S, Se, Te; Z = P, As, Sb; T = Si, Ge, Sn) with NH3 in order to form an A⋯N noncovalent bond, where A refers to the central atom. Geometries, energetics, atomic charges, and spectroscopic characteristics of these complexes were evaluated via DFT calculations. In all cases, the A–F bond, which is located opposite the base and is responsible for the σ-hole on the A atom, elongates and its stretching frequency undergoes a shift to the red. This shift varies ...


Does Thermotolerance In Daphnia Depend On The Mitochondrial Function?, Rajib Hasan Aug 2019

Does Thermotolerance In Daphnia Depend On The Mitochondrial Function?, Rajib Hasan

Electronic Theses and Dissertations

Thermotolerance limit in aquatic organism is set by the ability to sustain aerobic scope to sudden temperature shifts. This study tested the genetic and plastic differences in thermotolerance of Daphnia that can be explained by the differences in the ability to retain mitochondrial integrity at high temperatures. Five genotypes with different biogeographic origins were acclimated to 18C and 25C. We developed a rhodamine 123 in-vivo assay to measure mitochondrial membrane potential and observed higher fluorescent in heat damaged tissues as the disruption of the mitochondrial membrane potential. Significant effects on temperature tolerance were observed with CCCP ...


Elements Of An Effectiveresearch Presentation, Rachel Willand Charnley Aug 2019

Elements Of An Effectiveresearch Presentation, Rachel Willand Charnley

Chemistry and Biochemistry Faculty Presentations and Other Materials

No abstract provided.


Temporal Gene Expression Of Mesenchymal Cells In The Pediatric Lung, Quinlen F. Marshall, Soumyaroop Bhattacharya, Gautam Bandyopadhyay, Ravi Misra, Thomas Mariani, Gloria Pryhuber Aug 2019

Temporal Gene Expression Of Mesenchymal Cells In The Pediatric Lung, Quinlen F. Marshall, Soumyaroop Bhattacharya, Gautam Bandyopadhyay, Ravi Misra, Thomas Mariani, Gloria Pryhuber

Chemistry Student Work

INTRODUCTION: The newborn lung undergoes vast biochemical and physiological changes during adaptation from the intrauterine to the extrauterine environment. Lung morphogenesis continues from birth into early childhood, mediated by dynamic gene expression and a diversity of pulmonary cell types (Whitsett, JA. et al. Physiol. Rev, 2019). Murine models demonstrate that pulmonary mesenchymal cells exhibit remarkable heterogeneity in function and morphology during development, however, confirmation of their role is lacking in human neonates and early childhood (Guo, M. et al. Nat. Comm, 2019). In addition, many current human genomic studies of lung maturation suffer from limited sample size, limiting their applicability ...


Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali Aug 2019

Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali

UT GSBS Dissertations and Theses (Open Access)

Recently, a novel class of muscular dystrophy has been discovered in a family due to autosomal recessive missense mutation in POGLUT1. Mutation of this enzyme leads to decreased O-glucosyltransferase activity and impaired Notch signaling, the pathways important for skeletal muscle stem cell (satellite cells) quiescence and activation. We hypothesize that reduced POGLUT1 activity and impaired Notch signaling is causative of this limb girdle muscular dystrophy through dysfunction of muscle stem cells and myogenic progenitors.

To test this, we have used iPSCs for disease modeling and rescue experiments. Using a CRISPR based gene targeting method, we aimed to correct the point ...


Electronic Transmutation: An Aid For The Rational Design Of New Chemical Materials Using The Knowledge Of Bonding And Structure Of Neighboring Elements, Katie A. Lundell Aug 2019

Electronic Transmutation: An Aid For The Rational Design Of New Chemical Materials Using The Knowledge Of Bonding And Structure Of Neighboring Elements, Katie A. Lundell

All Graduate Theses and Dissertations

Everything in the universe is made up of elements from the periodic table. Each element has its own role that it plays in the formation of things it makes up. For instance, pencil lead is graphite. A series of honeycomb-like structures made up of carbon stacked on top of one another. Carbon’s neighbor to the left, boron doesn’t like to form such stacked honeycomb-like structures. But, what if there was a way to make boron act like carbon so it did like to form such structures? That question is the basis of the electronic transmutation concept presented in ...


High-Fat Diet In A Mouse Insulin-Resistant Model Induces Widespread Rewiring Of The Phosphotyrosine Signaling Network, Antje Dittmann, Norman J. Kennedy, Nina L. Soltero, Nader Morshed, Miyeko D. Mana, Omer H. Yilmaz, Roger J. Davis, Forest M. White Aug 2019

High-Fat Diet In A Mouse Insulin-Resistant Model Induces Widespread Rewiring Of The Phosphotyrosine Signaling Network, Antje Dittmann, Norman J. Kennedy, Nina L. Soltero, Nader Morshed, Miyeko D. Mana, Omer H. Yilmaz, Roger J. Davis, Forest M. White

Open Access Articles

Obesity-associated type 2 diabetes and accompanying diseases have developed into a leading human health risk across industrialized and developing countries. The complex molecular underpinnings of how lipid overload and lipid metabolites lead to the deregulation of metabolic processes are incompletely understood. We assessed hepatic post-translational alterations in response to treatment of cells with saturated and unsaturated free fatty acids and the consumption of a high-fat diet by mice. These data revealed widespread tyrosine phosphorylation changes affecting a large number of enzymes involved in metabolic processes as well as canonical receptor-mediated signal transduction networks. Targeting two of the most prominently affected ...


Intron And Small Rna Localization In Mammalian Neurons, Harleen Saini Jul 2019

Intron And Small Rna Localization In Mammalian Neurons, Harleen Saini

GSBS Dissertations and Theses

RNA molecules are diverse in form and function. They include messenger RNAs (mRNAs) that are templates for proteins, splice products such as introns that can generate functional noncoding RNAs, and a slew of smaller RNAs such as transfer RNAs (tRNAs) that help decode mRNAs into proteins. RNAs can show distinct patterns of subcellular localization that play an important role in protein localization. However, RNA distribution in cells is incompletely understood, with prior studies focusing primarily on RNAs that are long (>200 nucleotides), fully processed, and polyadenylated. We examined the distribution of RNAs in neurons. Neuronal compartments can be separated by ...


Impact Of Obesity On Ovotoxicity Induced By 7,12-Dimethylbenz[A]Anthracene In Mice, Jackson Nteeba, Shanthi Ganesan, Aileen F. Keating Jul 2019

Impact Of Obesity On Ovotoxicity Induced By 7,12-Dimethylbenz[A]Anthracene In Mice, Jackson Nteeba, Shanthi Ganesan, Aileen F. Keating

Aileen Keating

Insulin, elevated during obesity, regulates xenobiotic biotransformation enzymes, potentially through phosphatidylinositol 3-kinase (PI3K) signaling, in extraovarian tissues. PI3K regulates oocyte viability, follicular activation, and ovarian chemical biotransformation. 7,12-Dimethylbenz[a]anthracene (DMBA), a carcinogen and ovotoxicant, destroys all stages of follicles, leading to premature ovarian failure. Obesity has been reported to promote DMBA-induced tumors, but it remains unknown whether obesity affects ovarian xenobiotic metabolism. Therefore, we investigated ovarian expression of xenobiotic metabolism genes—microsomal epoxide hydrolase (Ephx1), glutathione S-transferase (GST) class Pi (Gstp1) and class mu 1 (Gstm1), and PI3K-signaling members (protein kinase B [AKT] alpha [Akt1], beta [Akt2], and ...