Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Apoptosis

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 119

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Glutathione S-Transferase Class Mu Regulation Of Apoptosis Signal-Regulating Kinase 1 Protein During Vcd-Induced Ovotoxicity In Neonatal Rat Ovaries, Poulomi Bhattacharya, Jill A. Madden, Nivedita Sen, Patricia B. Hoyer, Aileen F. Keating Jul 2019

Glutathione S-Transferase Class Mu Regulation Of Apoptosis Signal-Regulating Kinase 1 Protein During Vcd-Induced Ovotoxicity In Neonatal Rat Ovaries, Poulomi Bhattacharya, Jill A. Madden, Nivedita Sen, Patricia B. Hoyer, Aileen F. Keating

Aileen Keating

4-vinylcyclohexene diepoxide (VCD) destroys ovarian primordial and small primary follicles via apoptosis. In mice, VCD exposure induces ovarian mRNA expression of glutathione S-transferase (GST) family members, including isoform mu (Gstm). Extra-ovarian GSTM negatively regulates pro-apoptotic apoptosis signal-related kinase 1 (ASK1) through protein complex formation, which dissociates during stress, thereby initiating ASK1-induced apoptosis. The present study investigated the ovarian response of Gstm mRNA and protein to VCD. Induction of Ask1 mRNA at VCD-induced follicle loss onset was determined. Ovarian GSTM:ASK1 protein complex formation was investigated and VCD exposure effects thereon evaluated. Phosphatidylinositol-3 kinase (PI3K) regulation of GSTM protein was also ...


Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey Apr 2019

Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey

Biology ETDs

Properly executed cell division is crucial to development, maintenance, and longevity of multicellular organisms. Defects in both symmetric and asymmetric divisions can lead to improper developmental patterning, as well as genomic instability, disruption of tissue homeostasis, and cancer. Our research focuses on how regulators orchestrate proper cell divisions. Mushroom Body Defect (Mud) is one such regulator, and here we describe how Mud is regulated via the Hippo signaling pathway kinase Warts (Wts), showing Wts phosphorylates Mud to enhance interaction with the polarity protein Partner of Inscuteable, promoting spindle orientation activity. We next focus on another regulator, Shortstop (Shot), describing a ...


A H2ax–Carp-1 Interaction Regulates Apoptosis Signaling Following Dna Damage, Sreeja C. Sekhar, Jaganathan Venkatesh, Vino T. Cheriyan, Magesh Muthu, Edi Levi, Hadeel Assad, Paul Meister, Vishnu V. Undyala, James W. Gauld, Arun K. Rishi Feb 2019

A H2ax–Carp-1 Interaction Regulates Apoptosis Signaling Following Dna Damage, Sreeja C. Sekhar, Jaganathan Venkatesh, Vino T. Cheriyan, Magesh Muthu, Edi Levi, Hadeel Assad, Paul Meister, Vishnu V. Undyala, James W. Gauld, Arun K. Rishi

Chemistry and Biochemistry Publications

Cell Cycle and Apoptosis Regulatory Protein (CARP-1/CCAR1) is a peri-nuclear phosphoprotein that regulates apoptosis via chemotherapeutic Adriamycin (doxorubicin) and a novel class of CARP-1 functional mimetic (CFM) compounds. Although Adriamycin causes DNA damage, data from Comet assays revealed that CFM-4.16 also induced DNA damage. Phosphorylation of histone 2AX (γH2AX) protein is involved in regulating DNA damage repair and apoptosis signaling. Adriamycin or CFM-4.16 treatments inhibited cell growth and caused elevated CARP-1 and γH2AX in human breast (HBC) and cervical cancer (HeLa) cells. In fact, a robust nuclear or peri-nuclear co-localization of CARP-1 and γH2AX occurred in cells ...


The Caspase Cascade During Hibernation In The Golden-Mantled Ground Squirrel, Spermophilus Lateralis, Michael David Treat May 2018

The Caspase Cascade During Hibernation In The Golden-Mantled Ground Squirrel, Spermophilus Lateralis, Michael David Treat

UNLV Theses, Dissertations, Professional Papers, and Capstones

In several human pathologies like heart attack, stroke, neurodegenerative diseases, and autoimmune disorders, widespread cell death, or apoptosis, is a major cause of organ dysfunction and death. Hibernating golden-mantled ground squirrels, Spermophilus lateralis, experience numerous conditions during the winter that are known to be pro-apoptotic in other mammal systems (e.g. extreme hypothermia, ischemia and reperfusion, acidosis, increased reactive oxygen species, bone and muscle disuse). However, studies suggest that hibernators may invoke a protective phenotype to limit widespread cell damage and loss during the hibernation season. Could regulating apoptosis provide protection against the harmful conditions experienced during the hibernation season ...


Structure, Function & Dynamics At The Membrane, Evan O'Brien Jan 2018

Structure, Function & Dynamics At The Membrane, Evan O'Brien

Publicly Accessible Penn Dissertations

The biological membrane is necessary for maintaining cellular identity, yet must also allow for interaction with the extracellular environment in order to respond to stimuli. Proteins that are directly embedded in the membrane or that interact more peripherally are responsible for these extracellular signaling events, which lie at the heart of cell communication. The first major goal of this work was to interrogate the peripheral interaction of cytochrome c and the mitochondrial lipid cardiolipin at atomic resolution using solution nuclear magnetic resonance (NMR) techniques; this interaction is key to promoting apoptosis. After demonstrating that the protein was correctly folded in ...


Investigations On Cancer Cell Biological Effects Of Cdk8 Inhibitor Q-12, Zhixin Lu Jan 2018

Investigations On Cancer Cell Biological Effects Of Cdk8 Inhibitor Q-12, Zhixin Lu

University of the Pacific Theses and Dissertations

Over the past two decades, protein kinases have been intensively investigated as targets to treat neoplastic diseases. Many protein kinase inhibitors not only have therapeutic potential but are becoming invaluable reagents for the study of cell signaling.

We aspired to use our Cyclin-Dependent Kinase 8 inhibitor, Q-12, as a probe for biomarker discovery for CDK8 inhibitor sensitive tumor types. Q-12 shows potent inhibition of cell viability and induction of apoptosis process in some triple-negative breast cancer and colorectal cancer cell lines in vitro. Western blot results indicate that the reduction of STAT1 phosphorylation could be a robust indicator of CDK8 ...


The Effects Of Oxidative Stress On P75ntr Signaling In Dopaminergic Neurons, Cassandra Marie Escobedo Jan 2018

The Effects Of Oxidative Stress On P75ntr Signaling In Dopaminergic Neurons, Cassandra Marie Escobedo

Online Theses and Dissertations

The p75 neurotrophin receptor (p75NTR) is responsible for implementing cellular death during embryonic development and in response to cellular injury. The receptor has been recognized as a contributor of neurodegeneration in numerous pathological conditions. Cleavage of p75NTR by Tumor Necrosis Factor converting enzyme (TACE) and γ-secretase has been observed to be associated with an increase in neurodegeneration. In a previous study, p75NTR was discovered to become activated in sympathetic neurons in response to oxidative stress induced by 4-hydroxynonenal (HNE) in a ligand-independent mechanism. Furthermore, cleavage of the receptor was demonstrated to contribute to the death of sympathetic neurons following oxidative ...


Novel Docosahexaenoic Acid Ester Of Phloridzin Inhibits Proliferation And Triggers Apoptosis In An In Vitro Model Of Skin Cancer, Theodora Mantso, Dimitrios T. Trafalis, Sotiris Botaitis, Rodrigo Franco, Aglaia Pappa, H. P. Vasantha Rupasinghe, Mihalis I. Panayiotidis Jan 2018

Novel Docosahexaenoic Acid Ester Of Phloridzin Inhibits Proliferation And Triggers Apoptosis In An In Vitro Model Of Skin Cancer, Theodora Mantso, Dimitrios T. Trafalis, Sotiris Botaitis, Rodrigo Franco, Aglaia Pappa, H. P. Vasantha Rupasinghe, Mihalis I. Panayiotidis

Papers in Veterinary and Biomedical Science

Skin cancer is among the most common cancer types accompanied by rapidly increasing incidence rates, thus making the development of more efficient therapeutic approaches a necessity. Recent studies have revealed the potential role of decosahexaenoic acid ester of phloridzin (PZDHA) in suppressing proliferation of liver, breast, and blood cancer cell lines. In the present study, we investigated the cytotoxic potential of PZDHA in an in vitro model of skin cancer consisting of melanoma (A375), epidermoid carcinoma (A431), and non-tumorigenic (HaCaT) cell lines. Decosahexaenoic acid ester of phloridzin led to increased cytotoxicity in all cell lines as revealed by cell viability ...


The Molecular Basis Of Caspase-9 Inactivation By Pka And C-Abl Kinases, Banyuhay Paningbatan Serrano Jan 2018

The Molecular Basis Of Caspase-9 Inactivation By Pka And C-Abl Kinases, Banyuhay Paningbatan Serrano

Doctoral Dissertations

Caspases are the cysteine proteases that facilitate the fundamental pathway of programmed cell death or apoptosis. The activation and function of these powerful enzymes are tightly regulated to ensure the faithful execution of apoptosis and prevent untimely cell death. Many deadly human diseases such as cancer, neurodegeneration and autoimmune disorders have been associated with defective activation and faulty regulation of caspases. As such, caspases are considered as attractive drug targets, which when properly controlled, can lead to effective therapeutics for apoptosis-related diseases. Thus, comprehensive investigations of the structure, function and regulation of caspases are necessary to understand the complex mechanisms ...


Jnk Promotes Epithelial Cell Anoikis By Transcriptional And Post-Translational Regulation Of Bh3-Only Proteins, Nomeda Girnius, Roger J. Davis Nov 2017

Jnk Promotes Epithelial Cell Anoikis By Transcriptional And Post-Translational Regulation Of Bh3-Only Proteins, Nomeda Girnius, Roger J. Davis

UMass Metabolic Network Publications

Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis). While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK) signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that ...


Differential Involvement Of The Microtubule Cytoskeleton In Insulin Receptor Substrate 1 (Irs-1) And Irs-2 Signaling To Akt Determines The Response To Microtubule Disruption In Breast Carcinoma Cells, Jose Mercado-Matos, Jennifer L. Clark, Andrew J. Piper, Jenny Janusis, Leslie M. Shaw May 2017

Differential Involvement Of The Microtubule Cytoskeleton In Insulin Receptor Substrate 1 (Irs-1) And Irs-2 Signaling To Akt Determines The Response To Microtubule Disruption In Breast Carcinoma Cells, Jose Mercado-Matos, Jennifer L. Clark, Andrew J. Piper, Jenny Janusis, Leslie M. Shaw

UMass Metabolic Network Publications

The insulin receptor substrate (IRS) proteins serve as essential signaling intermediates for the activation of PI3K by both the insulin-like growth factor 1 receptor (IGF-1R) and its close family member, the insulin receptor (IR). Although IRS-1 and IRS-2 share significant homology, they regulate distinct cellular responses downstream of these receptors and play divergent roles in breast cancer. To investigate the mechanism by which signaling through IRS-1 and IRS-2 results in differential outcomes, we assessed the involvement of the microtubule cytoskeleton in IRS-dependent signaling. Treatment with drugs that either stabilize or disrupt microtubules reveal that an intact microtubule cytoskeleton contributes to ...


Gene 33/Mig6 Regulates Apoptosis And The Dna Damage Response Through Independent Mechanisms, Cen Li, Soyoung Park, Leonard M. Eisenberg, Hong Zhao, Zbigniew Darzynkiewicz, Dazhong Xu Mar 2017

Gene 33/Mig6 Regulates Apoptosis And The Dna Damage Response Through Independent Mechanisms, Cen Li, Soyoung Park, Leonard M. Eisenberg, Hong Zhao, Zbigniew Darzynkiewicz, Dazhong Xu

NYMC Faculty Posters

Gene 33 (Mig6, ERRFI1) is an inducible adaptor/scaffold protein whose expression can be induced by both stress and mitogenic signals. It contains multiple domains for protein-protein interaction and is involved in a broad spectrum of cellular functions. Gene 33 promotes apoptosis in a cell type-dependent manner. A recent study has linked Gene 33 to the DNA damage response (DDR) induced by hexavalent chromium [Cr(VI)]. Here we show that Gene 33 induces apoptosis via both c-Abl/p73 and EGFR/AKT-dependent pathways in lung epithelial and lung carcinoma cells. Ectopic expression of Gene 33 also triggers DDR in an ATM-dependent ...


Regulation Of The Drosophila Initiator Caspase Dronc Through Ubiquitylation, Hatem E. Kamber Kaya Jan 2017

Regulation Of The Drosophila Initiator Caspase Dronc Through Ubiquitylation, Hatem E. Kamber Kaya

GSBS Dissertations and Theses

Apoptosis is a programmed cell death mechanism that is evolutionary conserved from worms to humans. Apoptosis is mediated by initiator and effector caspases. The initiator caspases carry long pro-domains for their interaction with scaffolding proteins to form a cell-death platform, which is essential for their activation. Activated initiator caspases then cleave effector caspases that execute cell death through cleaving downstream targets. In addition to their apoptotic function, caspases also participate in events where caspase activity is not required for cell killing, but for regulating other functions, so-called non-apoptotic functions of caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian ...


Role Of Psr-1 C-Terminal Domain In Mediating Apoptotic Cell Clearance, Ashuvinee Elangovan Jan 2017

Role Of Psr-1 C-Terminal Domain In Mediating Apoptotic Cell Clearance, Ashuvinee Elangovan

Undergraduate Honors Theses

Programmed cell death plays a major physiological role in cell elimination in order to maintain cell homeostasis. Cell engulfment and clearance are important final steps of programmed cell death. Apoptotic cell clearance in C.elegans is triggered by alteration in phospholipid asymmetry. Phosphatidylserine (PS), which exists in the inner leaflet of plasma membrane in dormant cells, is externalized onto the outer leaflet during apoptosis and signals phagocytic cells for engulfment. PSR-1(PS Receptor) in C.elegans has been shown as a protein that preferentially binds to PS. PSR-1 was first discovered as a transmembrane protein on phagocytes that engulf apoptotic ...


Exploitation And Regulation Of Apoptotic Caspases, Scott Eron Jan 2017

Exploitation And Regulation Of Apoptotic Caspases, Scott Eron

Doctoral Dissertations

Caspases are the cysteine proteases that govern apoptotic cell death. The regulation of these enzymes is critical in order to restrain their death-inducing capabilities until the appropriate moment. Infidelity of caspase regulation and activation underlies a plethora of human diseases ranging from cancer to neurodegeneration. This establishes a pressing need for comprehensive studies of the apoptotic caspases in order to understand all aspects of their regulation, activation, substrate preferences, structure, and function. A detailed structural view of caspase regulation would have lasting implications for future therapeutic avenues targeting caspase function or apoptosis. This dissertation chronicles caspase regulation by phosphorylation as ...


Endoplasmic Reticulum Stress-Induced Hepatocellular Death Pathways Mediate Liver Injury And Fibrosis Via Stimulator Of Interferon Genes., Arvin Iracheta-Vellve, Jan Petrasek, Benedek Gyongyosi, Abhishek Satishchandran, Patrick Lowe, Karen Kodys, Donna Catalano, Charles D. Calenda, Evelyn A. Kurt-Jones, Kate A. Fitzgerald, Gyongyi Szabo Dec 2016

Endoplasmic Reticulum Stress-Induced Hepatocellular Death Pathways Mediate Liver Injury And Fibrosis Via Stimulator Of Interferon Genes., Arvin Iracheta-Vellve, Jan Petrasek, Benedek Gyongyosi, Abhishek Satishchandran, Patrick Lowe, Karen Kodys, Donna Catalano, Charles D. Calenda, Evelyn A. Kurt-Jones, Kate A. Fitzgerald, Gyongyi Szabo

Katherine A. Fitzgerald

Fibrosis, driven by inflammation, marks the transition from benign to progressive stages of chronic liver diseases. Although inflammation promotes fibrogenesis, it is not known whether other events, such as hepatocyte death, are required for the development of fibrosis. Interferon Regulatory Factor 3 (IRF3) regulates hepatocyte apoptosis and production of Type-I interferons (IFNs). In the liver, IRF3 is activated via Toll-like receptor 4 (TLR4) signaling or the ER adapter, Stimulator of Interferon Genes (STING). We hypothesized that IRF3-mediated hepatocyte death is an independent determinant of chemically-induced liver fibrogenesis. To test this, we performed acute or chronic carbontetrachloride (CCl4) administration to WT ...


Endoplasmic Reticulum Stress-Induced Hepatocellular Death Pathways Mediate Liver Injury And Fibrosis Via Stimulator Of Interferon Genes., Arvin Iracheta-Vellve, Jan Petrasek, Benedek Gyongyosi, Abhishek Satishchandran, Patrick Lowe, Karen Kodys, Donna Catalano, Charles D. Calenda, Evelyn A. Kurt-Jones, Kate A. Fitzgerald, Gyongyi Szabo Dec 2016

Endoplasmic Reticulum Stress-Induced Hepatocellular Death Pathways Mediate Liver Injury And Fibrosis Via Stimulator Of Interferon Genes., Arvin Iracheta-Vellve, Jan Petrasek, Benedek Gyongyosi, Abhishek Satishchandran, Patrick Lowe, Karen Kodys, Donna Catalano, Charles D. Calenda, Evelyn A. Kurt-Jones, Kate A. Fitzgerald, Gyongyi Szabo

Gyongyi Szabo

Fibrosis, driven by inflammation, marks the transition from benign to progressive stages of chronic liver diseases. Although inflammation promotes fibrogenesis, it is not known whether other events, such as hepatocyte death, are required for the development of fibrosis. Interferon Regulatory Factor 3 (IRF3) regulates hepatocyte apoptosis and production of Type-I interferons (IFNs). In the liver, IRF3 is activated via Toll-like receptor 4 (TLR4) signaling or the ER adapter, Stimulator of Interferon Genes (STING). We hypothesized that IRF3-mediated hepatocyte death is an independent determinant of chemically-induced liver fibrogenesis. To test this, we performed acute or chronic carbontetrachloride (CCl4) administration to WT ...


Tnf-Like Weak Inducer Of Apoptosis (Tweak) : Not So Weak After All., Joseph Dekward Mcmillan Iv Dec 2016

Tnf-Like Weak Inducer Of Apoptosis (Tweak) : Not So Weak After All., Joseph Dekward Mcmillan Iv

Electronic Theses and Dissertations

Background: Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a proinflammatory cytokine belonging to the TNF super family. TWEAK produces a variety of cellular responses through the binding to fibroblast growth factor inducible 14 (Fn14), a member of TNF receptor superfamily. Although Fn14 lacks a death domain, TWEAK has been found to induce apoptosis in some cell types by perturbing the activity of certain pathways such as TNF-receptor signaling. TWEAK is also known to regulate proliferation and differentiation of myogenic cells. We have previously reported that the TWEAK-Fn14 system causes skeletal muscle wasting both in vitro and ...


Endoplasmic Reticulum Stress-Induced Hepatocellular Death Pathways Mediate Liver Injury And Fibrosis Via Stimulator Of Interferon Genes., Arvin Iracheta-Vellve, Jan Petrasek, Benedek Gyongyosi, Abhishek Satishchandran, Patrick Lowe, Karen Kodys, Donna Catalano, Charles D. Calenda, Evelyn A. Kurt-Jones, Kate A. Fitzgerald, Gyongyi Szabo Nov 2016

Endoplasmic Reticulum Stress-Induced Hepatocellular Death Pathways Mediate Liver Injury And Fibrosis Via Stimulator Of Interferon Genes., Arvin Iracheta-Vellve, Jan Petrasek, Benedek Gyongyosi, Abhishek Satishchandran, Patrick Lowe, Karen Kodys, Donna Catalano, Charles D. Calenda, Evelyn A. Kurt-Jones, Kate A. Fitzgerald, Gyongyi Szabo

GSBS Student Publications

Fibrosis, driven by inflammation, marks the transition from benign to progressive stages of chronic liver diseases. Although inflammation promotes fibrogenesis, it is not known whether other events, such as hepatocyte death, are required for the development of fibrosis. Interferon Regulatory Factor 3 (IRF3) regulates hepatocyte apoptosis and production of Type-I interferons (IFNs). In the liver, IRF3 is activated via Toll-like receptor 4 (TLR4) signaling or the ER adapter, Stimulator of Interferon Genes (STING). We hypothesized that IRF3-mediated hepatocyte death is an independent determinant of chemically-induced liver fibrogenesis. To test this, we performed acute or chronic carbontetrachloride (CCl4) administration to WT ...


The Beneficial Role Of Extracellular Reactive Oxygen Species In Apoptosis-Induced Compensatory Proliferation, Neha Diwanji, Andreas Bergmann Aug 2016

The Beneficial Role Of Extracellular Reactive Oxygen Species In Apoptosis-Induced Compensatory Proliferation, Neha Diwanji, Andreas Bergmann

Molecular, Cell and Cancer Biology Publications

Apoptosis-induced proliferation (AiP) maintains tissue homeostasis following massive stress-induced cell death. During this phenomenon, dying cells induce proliferation of the surviving cells to compensate for the tissue loss, and thus restore organ size. Along with wound healing and tissue regeneration, AiP also contributes to tumor repopulation following radiation or chemotherapy. There are several models of AiP. Using an "undead" AiP model that causes hyperplastic overgrowth of Drosophila epithelial tissue, we recently demonstrated that extracellular reactive oxygen species (eROS) are produced by undead epithelial cells, and are necessary for inducing AiP and overgrowth. Furthermore, hemocytes, the Drosophila blood cells, are seen ...


Geometric Control Of Yap-Dependent Mechanotransduction: A Proposed Model, Ngozi A. Eze, Heather A. Cirka, Kristen L. Billiar May 2016

Geometric Control Of Yap-Dependent Mechanotransduction: A Proposed Model, Ngozi A. Eze, Heather A. Cirka, Kristen L. Billiar

UMass Center for Clinical and Translational Science Research Retreat

The Billiar lab is interested in the interplay between mechanical tension and programmed cell death (namely, apoptosis) in cells growing on micro-contact printed aggregates. The Billiar lab uses a bioinspired hydrogel to develop an in vitro model for mechanosensitive signaling in mammalian cells. The micro-contact printed cell aggregates experience a loss of tensional homeostasis at the center of the aggregates, which results in selective cell death at the center, but not periphery of the aggregates, followed by calcification, similar to excised diseased aortic valves. However, the subcellular mechanisms responsible for transducing the mechanical cues from the loss of tensional homeostasis ...


Role Of Akt2 In Cell Survival, Establishment And/Or Maintenance Of Colorectal Cancer Metastasis, Ekta Agarwal May 2016

Role Of Akt2 In Cell Survival, Establishment And/Or Maintenance Of Colorectal Cancer Metastasis, Ekta Agarwal

Theses & Dissertations

There is extensive evidence for the role of aberrant cell survival signaling mechanisms in cancer progression and metastasis. Akt acts as a key signaling node that bridges oncogenic receptors to many essential pro-survival cellular functions, and is perhaps the most commonly activated signaling pathway in human cancer. Akt has three isoforms, Akt1, 2 and 3. Variable phenotypic differences are observed following the genetic inactivation and/or removal of the Akt isoforms, which suggests that the isoforms have distinct non-redundant functional characteristics despite sharing a high level of structural homology and similar mechanisms of activation.

The major goal of the work ...


Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton May 2016

Investigation Of Novel Functions For Dna Damage Response And Repair Proteins In Escherichia Coli And Humans, Benjamin A. Hilton

Electronic Theses and Dissertations

Endogenous and exogenous agents that can damage DNA are a constant threat to genome stability in all living cells. In response, cells have evolved an array of mechanisms to repair DNA damage or to eliminate the cells damaged beyond repair. One of these mechanisms is nucleotide excision repair (NER) which is the major repair pathway responsible for removing a wide variety of bulky DNA lesions. Deficiency, or mutation, in one or several of the NER repair proteins is responsible for many diseases, including cancer. Prokaryotic NER involves only three proteins to recognize and incise a damaged site, while eukaryotic NER ...


Modulation Of Cell Death Signaling And Cell Proliferation By The Interaction Of Homoserine Lactones And Paraoxonase 2., Aaron Mackallan Neely May 2016

Modulation Of Cell Death Signaling And Cell Proliferation By The Interaction Of Homoserine Lactones And Paraoxonase 2., Aaron Mackallan Neely

Electronic Theses and Dissertations

Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule that functions to facilitate bacteria-bacteria communication. C12 has also been reported to affect many aspects of human host cell physiology, including evoking cell death in various types of cells. However, the signaling pathway(s) leading to C12-triggerred cell death remains unclear. To clarify cell death signaling induced by C12, we examined mouse embryonic fibroblasts (MEFs) deficient in one or more caspases. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in cells, probably through the direct induction of mitochondrial membrane permeabilization. Previous ...


Characterization And Target Identification Of Ak301: A Novel Mitotic Arrest Agent, Michael J. Bond, Avijeet S. Chopra, Marina Bleiler, Michelle Yeagley, Eric Scocchera Apr 2016

Characterization And Target Identification Of Ak301: A Novel Mitotic Arrest Agent, Michael J. Bond, Avijeet S. Chopra, Marina Bleiler, Michelle Yeagley, Eric Scocchera

University Scholar Projects

The Giardina Laboratory has recently identified AK301 as a novel mitotic arrest agent. This work aimed to characterize the arrest state induced by AK301 (EC50 ~ 150nM) and identify the cellar targets responsible for the arrest. It was found that AK301 arrest is readily reversible upon withdrawal of AK301. Cells that slip from mitosis after removal of AK301 are sensitized to apoptosis. This was found to be unique for AK301 when compared to other mitotic arrest agents like colchicine, vincristine, and BI2536. Arrested cells were found to have increased ATM activity as well as an upregulation of p53 and several ...


Twist-Mediated Epithelial-Mesenchymal Transition Promotes Breast Tumor Cell Invasion Via Inhibition Of Hippo Pathway, Yifan Wang, Jingyi Liu, Xuhua Ying, Pengnian Charles Lin, Binhua P. Zhou Apr 2016

Twist-Mediated Epithelial-Mesenchymal Transition Promotes Breast Tumor Cell Invasion Via Inhibition Of Hippo Pathway, Yifan Wang, Jingyi Liu, Xuhua Ying, Pengnian Charles Lin, Binhua P. Zhou

Molecular and Cellular Biochemistry Faculty Publications

Twist is a key transcription factor for Epithelial-mesenchymal transition (EMT), which is a cellular de-differentiation program that promotes invasion and metastasis, confers tumor cells with cancer stem cell (CSC)-like characteristics, and increases therapeutic resistance. However, the mechanisms that facilitate the functions of Twist remain unclear. Here we report that Twist overexpression increased expression of PAR1, an upstream regulator of the Hippo pathway; PAR1 promotes invasion, migration, and CSC-like properties in breast cancer by activating the transcriptional co-activator TAZ. Our study indicates that Hippo pathway inhibition is required for the increased migratory and invasiveness ability of breast cancer cells in ...


Non-Thermal Atmospheric Plasma Induces Ros-Independent Cell Death In U373mg Glioma Cells And Augments The Cytotoxicity Of Temozolomide, Gillian Conway, Alan Casey, Vladimir Milosavljevic, Yupeng Liu, Orla L. Howe, Patrick Cullen, James Curtin Feb 2016

Non-Thermal Atmospheric Plasma Induces Ros-Independent Cell Death In U373mg Glioma Cells And Augments The Cytotoxicity Of Temozolomide, Gillian Conway, Alan Casey, Vladimir Milosavljevic, Yupeng Liu, Orla L. Howe, Patrick Cullen, James Curtin

Articles

Non-thermal atmospheric plasma (NTAP) is an ionised gas produced under high voltage that can generate short-lived chemically active species and induce a cytotoxic insult in cancer cells. Cell-specific resistance to NTAP-mediated cytotoxicity has been reported in the literature. The aim of this study was to determine whether resistance against NTAP could be overcome using the human glioma cell line U373MG.

Methods:

Non-thermal atmospheric plasma was generated using a Dielectric Barrier Device (DBD) system with a maximum voltage output of 120 kV at 50 Hz. The viability of U373MG GBM cells and HeLa cervical carcinoma cells was determined using morphology, flow ...


Mir494 Reduces Renal Cancer Cell Survival Coinciding With Increased Lipid Droplets And Mitochondrial Changes, Punashi Dutta, Edward Haller, Arielle Sharp, Meera Nanjundan Jan 2016

Mir494 Reduces Renal Cancer Cell Survival Coinciding With Increased Lipid Droplets And Mitochondrial Changes, Punashi Dutta, Edward Haller, Arielle Sharp, Meera Nanjundan

Cell Biology, Microbiology, and Molecular Biology Faculty Publications

Background: miRNAs can regulate cellular survival in various cancer cell types. Recent evidence implicates the formation of lipid droplets as a hallmark event during apoptotic cell death response. It is presently unknown whether MIR494, located at 14q32 which is deleted in renal cancers, reduces cell survival in renal cancer cells and if this process is accompanied by changes in the number of lipid droplets.

Methods: 769-P renal carcinoma cells were utilized for this study. Control or MIR494 mimic was expressed in these cells following which cell viability (via crystal violet) and apoptotic cell numbers (via Annexin V/PI staining) were ...


C. Elegans As A Genetics Model To Study Paternal Mitochondria Elimination And Apoptosis Kinetics Regulation, Hanzeng Li Jan 2016

C. Elegans As A Genetics Model To Study Paternal Mitochondria Elimination And Apoptosis Kinetics Regulation, Hanzeng Li

Chemistry & Biochemistry Graduate Theses & Dissertations (1986-2018)

The round worm, Caenorhabditis elegans, provides a simple system to study complex questions. The philosophy behind it is that a single cell contains almost all of the components that make up life, even as complex as a human. I studied two conserved and fundamental biological topics over the span of the past 6 years: programmed cell death, and paternal mitochondrial elimination (PME). Programmed cell death (apoptosis) is the process by which individual cells sacrifice themselves for the good of the organism. Cells undergo apoptosis in a finely regulated fashion. Using C. elegans, I investigated the regulatory mechanism of CED-8, an ...


Direct Regulation Of Apoptosis By Linear Ubiqutin Chain Assembly Complex (Lubac) And Feedback Regulation Of Lubac Function By Caspases, Donghyun Joo Aug 2015

Direct Regulation Of Apoptosis By Linear Ubiqutin Chain Assembly Complex (Lubac) And Feedback Regulation Of Lubac Function By Caspases, Donghyun Joo

UT GSBS Dissertations and Theses (Open Access)

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine that plays a role in various cellular processes such as proliferation, differentiation (mainly through NF-κB signaling) and death (via apoptosis signaling). Recently, linear ubiquitination by LUBAC (linear ubiquitin chain assembly complex) was reported to have a regulatory function in TNF-α mediated NF-κB activation. Although LUBAC is suggested to control not only NF-kB signaling but also the apoptosis pathway, the precise mechanism of apoptosis regulation remains unknown. Moreover, NF-κB and apoptosis pathways have opposed but fundamental functions for various cellular processes. Although these two pathways actively interplay to balance the death and survival, the ...