Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Gaip Interacting Protein C-Terminus Regulates Autophagy And Exosome Biogenesis Of Pancreatic Cancer Through Metabolic Pathways, Santanu Bhattacharya, Krishnendu Pal, Anil K. Sharma, Shamit K. Dutta, Julie S. Lau, Irene K. Yan, Enfeng Wang, Ahmed Elkhanany, Khalid M. Alkharfy, Arunik Sanyal, Tushar C. Patel, Suresh T. Chari, Mark R. Spaller, Debabrata Mukhopadhyay Dec 2014

Gaip Interacting Protein C-Terminus Regulates Autophagy And Exosome Biogenesis Of Pancreatic Cancer Through Metabolic Pathways, Santanu Bhattacharya, Krishnendu Pal, Anil K. Sharma, Shamit K. Dutta, Julie S. Lau, Irene K. Yan, Enfeng Wang, Ahmed Elkhanany, Khalid M. Alkharfy, Arunik Sanyal, Tushar C. Patel, Suresh T. Chari, Mark R. Spaller, Debabrata Mukhopadhyay

Open Dartmouth: Peer-reviewed articles by Dartmouth faculty

GAIP interacting protein C terminus (GIPC) is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular ...


Optimization Of A Chemical Genetic Screen To Identify Druggable Targets In U138 Cells Treated With Laromustine, Kathryn Coe Jan 2014

Optimization Of A Chemical Genetic Screen To Identify Druggable Targets In U138 Cells Treated With Laromustine, Kathryn Coe

Honors Theses

Laromustine is an experimental sulfonylhydrazine prodrug used in late-stage clinical studies against acute myeloid leukemia (AML) and glioblastoma multiforme (GBM). Despite initial promise for both indications, clinical trials for GBM have not been as successful as those for AML. To investigate methods for improving the effectiveness of laromustine in GBM and to learn more about the mechanism of action of laromustine, a chemical genetic screen will be conducted to identify agents that sensitize GBM cells to the anti-proliferative effects of laromustine. The library, which will include approximately 450 FDA-approved drugs, will be screened using a newly optimized high throughput assay ...