Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Advances In Structural And Functional Analysis Of Membrane Proteins By Electron Crystallography, Goragot Wisedchaisri, Steve Reichow, Tamir Gonen Oct 2011

Advances In Structural And Functional Analysis Of Membrane Proteins By Electron Crystallography, Goragot Wisedchaisri, Steve Reichow, Tamir Gonen

Chemistry Faculty Publications and Presentations

Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane ...


Identification Of The Allosteric Regulatory Site Of Insulysin, Nicholas Noinaj, Sonia K. Bhasin, Eun Suk Song, Kirsten E. Scoggin, Maria A. Juliano, Luiz Juliano, Louis B. Hersh, David W. Rodgers Jun 2011

Identification Of The Allosteric Regulatory Site Of Insulysin, Nicholas Noinaj, Sonia K. Bhasin, Eun Suk Song, Kirsten E. Scoggin, Maria A. Juliano, Luiz Juliano, Louis B. Hersh, David W. Rodgers

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP.

PRINCIPAL FINDINGS: The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates ...


Novel Adaptor-Dependent Domains Promote Processive Degradation By Clpxp, Keith L. Rood Jan 2011

Novel Adaptor-Dependent Domains Promote Processive Degradation By Clpxp, Keith L. Rood

Masters Theses 1911 - February 2014

Protein degradation by ATP dependent proteases is a universally conserved process. Recognition of substrates by such proteases commonly occurs via direct interaction or with the aid of a regulatory adaptor protein. An example of this regulation is found in Caulobacter crescentus, where key regulatory proteins are proteolysed in a cell-cycle dependent fashion. Substrates include essential transcription factors, structural proteins, and second messenger metabolism components. In this study, we explore sequence and structural requirements for regulated adaptor mediated degradation of PdeA, an important regulator of cyclic-di-GMP levels.

Robust degradation of PdeA is dependent on the response regulator CpdR in vivo and ...