Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

UT GSBS Dissertations and Theses (Open Access)

Laboratory and Basic Science Research

Glucose deprivation

Articles 1 - 1 of 1

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Energy Stress Causes Chaperones To Assemble Into Cytoplasmic Complexes, Kimberly J. Cope Aug 2014

Energy Stress Causes Chaperones To Assemble Into Cytoplasmic Complexes, Kimberly J. Cope

UT GSBS Dissertations and Theses (Open Access)

The majority of proteins require molecular chaperones to assist their folding into tertiary and quaternary structures. Certain stresses can compromise the weak hydrophobic forces responsible for these structures and lead to protein unfolding, misfolding, and aggregation. Aggregates of proteins are hallmarks of devastating diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. Fortunately, bacteria, plants, and fungi have a potent disaggregase, named Hsp104 in Saccharomyces cerevisiae. Recently, heat-induced aggregates, termed Q-bodies, were found to contain three molecular chaperones: Hsp70, Hsp104, and Hsp42. Their coalescence from small puncta into larger inclusions required Hsp104. During glucose deprivation, a stress that ...