Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 47

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali Aug 2019

Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali

UT GSBS Dissertations and Theses (Open Access)

Recently, a novel class of muscular dystrophy has been discovered in a family due to autosomal recessive missense mutation in POGLUT1. Mutation of this enzyme leads to decreased O-glucosyltransferase activity and impaired Notch signaling, the pathways important for skeletal muscle stem cell (satellite cells) quiescence and activation. We hypothesize that reduced POGLUT1 activity and impaired Notch signaling is causative of this limb girdle muscular dystrophy through dysfunction of muscle stem cells and myogenic progenitors.

To test this, we have used iPSCs for disease modeling and rescue experiments. Using a CRISPR based gene targeting method, we aimed to correct the point ...


Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy May 2019

Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy

UT GSBS Dissertations and Theses (Open Access)

The eukaryotic cytosolic proteome is vulnerable to changes in proteostatic and redox balance caused by temperature, pH, oxidants and xenobiotics. Cysteine-containing proteins are especially at risk as the thiol side chain is subject to oxidation, adduction and chelation by thiol-reactive compounds. All of these thiol-modifiers have been demonstrated to induce the heat shock response and recruit protein chaperones to sites of presumed protein aggregation in the budding yeast Saccharomyces cerevisiae. However, endogenous targets of thiol stress toxicity responsible for these outcomes are largely unknown. Furthermore, I hypothesize proteins identified as redox-active are prone to misfolding and aggregation by thiol-specific stress ...


Characterization Of Notch1 And Pi3k-Pten-Akt/Mtor Pathway Interaction In Head And Neck Squamous Cell Carcinoma, Kyriante' Henry Dec 2017

Characterization Of Notch1 And Pi3k-Pten-Akt/Mtor Pathway Interaction In Head And Neck Squamous Cell Carcinoma, Kyriante' Henry

UT GSBS Dissertations and Theses (Open Access)

Head and neck squamous cell carcinoma (HNSCC) affects various mucosal sites of the upper aerodigestive tract, including the nasal and oral cavities, the nasopharynx, and the oropharynx. More than five hundred thousand new cases of HNSCC occurred in 2011 alone, with 50,000 reported cases in the United States. This trend made HNSCC the seventh most common non-skin cancer worldwide (Ferlay et al., 2015). Although significant epidemiological and pathological advancements have been made, survival rates have not improved much over the last 40 years, leaving a mortality rate that remains at approximately 50%. An unbiased drug screen demonstrated that HNSCC ...


Insights Into The Therapeutic Potential Of Salt Inducible Kinase 1: A Novel Mechanism Of Metabolic Control, Randi Fitzgibbon Dec 2017

Insights Into The Therapeutic Potential Of Salt Inducible Kinase 1: A Novel Mechanism Of Metabolic Control, Randi Fitzgibbon

UT GSBS Dissertations and Theses (Open Access)

Salt inducible kinase 1 (SIK1) has been considered a stress-inducible kinase since it was first cloned in 1999. Continued efforts since this time have been dedicated to characterizing the structure and function of SIK1. Such research has laid the ground work for our understanding of SIK1 action and regulation in tissue and stimuli dependent manners. The fundamental findings of this dissertation continue in this tradition and include investigations of SIK1 regulatory mechanisms in skeletal muscle cells, the cellular and physiological effects of SIK1 loss of function in vitro and in vivo, and intracellular metabolic and mitochondrial regulation by this kinase ...


Endocytic Trafficking Of The Amyloid Precursor Protein In Rat Cortical Neurons, Sahily Reyes Dec 2017

Endocytic Trafficking Of The Amyloid Precursor Protein In Rat Cortical Neurons, Sahily Reyes

UT GSBS Dissertations and Theses (Open Access)

Amyloid-beta (Aβ) aggregation and deposition into extracellular plaques is a hallmark of the most common forms of dementia, including Alzheimer’s disease. The Aβ-containing plaques result from pathogenic cleavage of amyloid precursor protein (APP) by secretases resulting in intracellular production of Aβ peptides that are secreted and accumulate extracellularly. Despite considerable progress towards understanding APP processing and Aβ aggregation, the mechanisms underlying endosomal production of Aβ peptides and their secretion remain unclear. Using endosomes isolated from cultured primary neurons, we determined that the trafficking of APP from the endosomal membrane into internal vesicles of late endosome/multivesicular bodies (MVB) is ...


Preclinical Development Of Therapeutic Strategies Against Triple-Negative And Inflammatory Breast Cancer, Angie M. Torres-Adorno Aug 2017

Preclinical Development Of Therapeutic Strategies Against Triple-Negative And Inflammatory Breast Cancer, Angie M. Torres-Adorno

UT GSBS Dissertations and Theses (Open Access)

Triple-negative (TNBC) and inflammatory (IBC) breast cancer are the most aggressive forms of breast cancer, accounting for 20% and 10% of cancer-related deaths, respectively. Among IBC cases, 30% are additionally classified with TNBC molecular pathology, a diagnosis that significantly worsens patient’s prognosis. The current lack of TNBC and IBC molecular understanding prevents the development of effective therapeutic strategies. To identify effective treatments, we explored aberrant apoptosis pathways and cell membrane fluidity as novel therapeutic targets.

We first identified an effective therapeutic strategy against TNBC and IBC by pro-apoptotic protein NOXA-mediated inhibition of the anti-apoptotic protein MCL1 following inhibition of ...


Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang Aug 2017

Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang

UT GSBS Dissertations and Theses (Open Access)

Precise control of gene expression during development is orchestrated by transcription factors, signaling pathways and co-regulators, with complex cross-regulatory events often occurring. Growing evidence has identified chromatin modifiers as important regulators for development as well, yet how particular chromatin modifying enzymes affect specific developmental processes remains largely unclear. Embryonic stem cells (ESCs) are self-renewing, pluripotent, and have the abilities to generate almost all cell types in adult tissues. The dual capacity of ESCs to self-renew and differentiate offers unlimited potential for studying gene regulation events at specific developmental stages in vitro that parallel developmental events during embryogenesis in vivo.

In ...


Phopsphorylation And Ubiquitin Modification At Dna Damage Sites In Response To Double-Strand Breaks, Atanu Paul May 2017

Phopsphorylation And Ubiquitin Modification At Dna Damage Sites In Response To Double-Strand Breaks, Atanu Paul

UT GSBS Dissertations and Theses (Open Access)

Genomes of all organisms are continuously damaged by numerous exogenous and endogenous sources leading to different kinds of DNA lesions, which if not repaired efficiently may trigger wide-scale genomic instability, a hallmark of cancer development. To overcome this, cells have evolved a sophisticated sensory network called the DNA damage response (DDR) comprised of a large number of distinct protein complexes categorized as sensor, mediator, transducer and effector proteins that amplify the DNA damage signal and activate cell cycle checkpoint to initiate DNA repair or trigger apoptosis where the defect is beyond repair. This intricate signaling pathway is tightly regulated by ...


The Role Of Adenosine Signaling In Mature Erythrocytes And Erythroid Progenitors, Hong Liu May 2017

The Role Of Adenosine Signaling In Mature Erythrocytes And Erythroid Progenitors, Hong Liu

UT GSBS Dissertations and Theses (Open Access)

Adenosine is a ubiquitous nucleoside in almost all the cells throughout our bodies. It is highly induced particularly under hypoxia or energy depletion conditions. Adenosine functions as a critical ligand, after binding to membrane-associated adenosine receptors, adenosine initiates a downstream signaling cascade and subsequently contributes to functions of nervous system, immune response, vascular function and even metabolism.

Hypoxia is a condition with limited O2 availability in the whole body or a region of the body. It is a major consequence of many respiratory and cardiovascular diseases, as well as for people living and working at high altitudes or other ...


Understanding The Mechanism Of Genomic Instability During Replicative Aging In Budding Yeast, Sangita Pal May 2017

Understanding The Mechanism Of Genomic Instability During Replicative Aging In Budding Yeast, Sangita Pal

UT GSBS Dissertations and Theses (Open Access)

Aging brings a gradual decline in molecular fidelity and biological functionality, resulting in age related phenotypes and diseases. Despite continued efforts to uncover the conserved aging pathways among eukaryotes, exact molecular causes of aging are still poorly understood. One of the most important hallmarks of aging is increased genomic instability. However, there remains much ambiguity as to the cause. I am studying the replicative life span (RLS) of the genetically tractable model organism Saccharomyces cerevisiae, or budding yeast using the innovative “mother enrichment program” as the method to isolate unparalleled numbers of aged yeast cells to investigate the molecular changes ...


Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang Dec 2016

Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang

UT GSBS Dissertations and Theses (Open Access)

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the selective loss of the dopaminergic neurons in the Substantia nigra pars compacta region of the brain. PD is also the most common neurodegenerative disorder and the second most common movement disorder. PD patients exhibit the cardinal symptoms, including tremor of the extremities, rigidity, slowness of movement, and postural instability, after 70-80% of DA neurons degenerate. It is, therefore, imperative to elucidate the underlying mechanisms involved in the selective degeneration of DA neurons. Although increasing numbers of PD genes have been identified, why these largely widely expressed genes ...


¬¬Define The Epigenetic Profiles And Subtype-Specific Genes Of Breast Cancer, Wenqian Li Aug 2016

¬¬Define The Epigenetic Profiles And Subtype-Specific Genes Of Breast Cancer, Wenqian Li

UT GSBS Dissertations and Theses (Open Access)

Molecular profiling has identified 5 distinct subtypes of breast cancer, luminal A, luminal B, HER2-enriched, basal-like, and claudin-low breast cancer. These 5 subtypes correlate with hormone response, patient prognosis, and response to therapy. Although steady state gene expression patterns have been explored using expression microarrays, very little is known about the initial, disease-driving transcriptional changes in these cancers or epigenetic changes associated with the differential gene expression signatures. Defining these changes may provide new insights into the mechanisms by which these subtypes arise, as well as new avenues for breast cancer prevention, diagnosis, and treatment. Using Chromatin Immunoprecipitation sequencing and ...


Defining The Functions Of Usp22 And Usp44 In Regulation Of H2bub1 Levels, Xianjiang Lan Aug 2016

Defining The Functions Of Usp22 And Usp44 In Regulation Of H2bub1 Levels, Xianjiang Lan

UT GSBS Dissertations and Theses (Open Access)

Aberrant levels of histone ubiquitination are involved in various human diseases including neurodegenerative disorders and cancers. Particularly, Histone H2B monoubiquitination (H2Bub1) is highly associated with gene regulation in both normal cells and diseases. Many deubiquitinases (mainly USPs) are defined to regulate global H2Bub1 levels. However, how these USPs are regulated and how they contribute to diseases are not well understood.

USP22, part of the deubiquitination module (DUBm) in the SAGA complex, is a well-defined regulator of H2Bub1 levels. ATXN7, another crucial subunit of the SAGA DUBm, is involved in a neurodegenerative disease, spinocerebellar ataxia type 7 (SCA7), due to a ...


The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan May 2016

The Roles Of Malt1 In Nf-Κb Activation And Solid Tumor Progression, Deng Pan

UT GSBS Dissertations and Theses (Open Access)

The transcription factor NF-κB plays a central role in many aspects of biological processes and diseases, such as inflammation and cancer. Although it has been suggested thatNF-κB is critical in tumorigenesis and tumor progression, the molecular mechanism by which NF-κB is activated in solid tumor remains largely unknown. In the current work, we focus on growth factor receptor-induced NF-κB activation and tumor progression, including epidermal growth factor receptor (EGFR)-induced NF-κB in lung cancer and heregulin receptor (HER2)-induced NF-κB in breast cancer. We found that Mucosa-associated lymphoma translocation protein 1 (MALT1), also known as paracaspase, is required for EGFR-induced ...


Developing And Using Methyl-Specific Antibodies To Study The Biological Roles Of Arginine Methylation, Vidyasiri Vemulapalli May 2016

Developing And Using Methyl-Specific Antibodies To Study The Biological Roles Of Arginine Methylation, Vidyasiri Vemulapalli

UT GSBS Dissertations and Theses (Open Access)

Arginine residues can be modified in three different ways to produce asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and monomethylarginine (MMA). These modifications are catalyzed by a family of nine protein arginine methyltransferases (PRMT1-9), which are of three types (I, II, and III). The majority of Type I enzymes asymmetrically dimethylate Glycine- and Arginine-rich (GAR) motifs, except for PRMT4, which methylates Proline-, Glycine-, and Methionine-rich (PGM) motifs. The same substrates (GAR or PGM motifs) can also be dimethylated by PRMT5 in a symmetric fashion. However, it is not clear whether there are dedicated residues within these motifs for ADMA and SDMA ...


Preventing Thymus Involution In K5.Cyclin D1 Transgenic Mice Sustains The Naïve T Cell Compartment With Age, Michelle L. Bolner Dec 2015

Preventing Thymus Involution In K5.Cyclin D1 Transgenic Mice Sustains The Naïve T Cell Compartment With Age, Michelle L. Bolner

UT GSBS Dissertations and Theses (Open Access)

The thymus maintains T cell receptor (TCR) repertoire diversity through perpetual release of self-MHC restricted naive T cells. However, thymus involution during the aging process reduces naïve T cell output, leading to defective immune responsiveness to newly encountered antigens. We have found that early thymus involution precipitates the age-associated shift favoring memory T cell dominancy in young control mice. Furthermore, we have shown that age-related thymus involution is prevented in mice expressing a keratin 5 promoter-driven Cyclin D1 (K5.D1) transgene in thymic epithelial cells (TECs). Thymopoiesis occurs normally in K5.D1 transgenic thymi and sustains T cell output to ...


The Tumor Suppressor Notch Inhibits Head And Neck Squamous Cell Carcinoma (Hnscc) Tumor Growth And Progression By Modulating Proto-Oncogenes Axl And Ctnnal1 (Α-Catulin), Shhyam Moorthy, Shhyam Moorthy Dec 2015

The Tumor Suppressor Notch Inhibits Head And Neck Squamous Cell Carcinoma (Hnscc) Tumor Growth And Progression By Modulating Proto-Oncogenes Axl And Ctnnal1 (Α-Catulin), Shhyam Moorthy, Shhyam Moorthy

UT GSBS Dissertations and Theses (Open Access)

Background: Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common malignancy worldwide, with roughly 300,000 cancer related deaths occurring globally each year. The survival of patients with HNSCC has not changed significantly over the past decade, leading investigators to search for promising molecular targets. To identify new treatment targets and biomarkers that could better guide therapy, we previously characterized the genomic alterations from primary HNSCC patient samples. We were among the first to discover that NOTCH1 is one of the most frequently mutated genes in this cancer type. The spectrum of inactivating NOTCH1 mutations in HNSCC ...


Molecular Regulation Of Vascular Calcification In Murine Models Of Atherosclerosis, Shanshan Gao Dec 2015

Molecular Regulation Of Vascular Calcification In Murine Models Of Atherosclerosis, Shanshan Gao

UT GSBS Dissertations and Theses (Open Access)

Background: Calcification occurs often in the atherosclerotic lesions of patients with coronary heart disease and animals with hypercholesterolemia, such as apolipoprotein-E deficient (ApoE-/-) mice. However, the mechanism(s) underlying the development of calcification in atherosclerosis remains unclear. ApoE acts as a lipid transporter, but also has been recognized as a potential regulator of osteogenesis. Little information is available as to whether ApoE has any direct impact on osteogenesis and calcification in vascular smooth muscle cells (VSMC). Several signal transduction pathways play a role in regulation of calcification, including the Wnt/β-catenin system and potentially GTAP, an ubiquitin-conjugating enzyme responsible for ...


Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd Dec 2015

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd

UT GSBS Dissertations and Theses (Open Access)

Normal Glycolytic Enzyme Activity is Critical for Hypoxia Inducible Factor-1α Activity and Provides Novel Targets for Inhibiting Tumor Growth

By Geoffrey Grandjean

Advisory Professor: Garth Powis, D. Phil

Unique to proliferating cancer cells is the observation that their increased need for energy is provided by a high rate of glycolysis followed by lactic acid fermentation in a process known as the Warburg Effect, a process many times less efficient than oxidative phosphorylation employed by normal cells to satisfy a similar energy demand [1]. This high rate of glycolysis occurs regardless of the concentration of oxygen in the cell and is ...


Histone H3 K4 Methylation Regulates The Spindle Assembly Checkpoint Through Direct Binding Of Multiple Checkpoint Components And Cdc20, Andria C. Schibler Aug 2015

Histone H3 K4 Methylation Regulates The Spindle Assembly Checkpoint Through Direct Binding Of Multiple Checkpoint Components And Cdc20, Andria C. Schibler

UT GSBS Dissertations and Theses (Open Access)

Histone H3K4 methylation is conserved across species and is associated with active transcription. By using Saccharomyces cerevisiae, we found histone H3K4 methylation has a previously unknown role in regulating mitosis through the Spindle Assembly Checkpoint. The Spindle Assembly Checkpoint ensures duplicated chromosomes are segregated correctly and each daughter cell receives one full copy of the genome. Our data show SET1 mutants and histone H3K4 mutants display a resistance to the mitotic poison, benomyl. Moreover methylated histone H3 directly binds to Spindle Assembly Checkpoint proteins Bub3 and Mad2 as well as the activator of the Anaphase Promoting Complex (APC) protein Cdc20 ...


Direct Regulation Of Apoptosis By Linear Ubiqutin Chain Assembly Complex (Lubac) And Feedback Regulation Of Lubac Function By Caspases, Donghyun Joo Aug 2015

Direct Regulation Of Apoptosis By Linear Ubiqutin Chain Assembly Complex (Lubac) And Feedback Regulation Of Lubac Function By Caspases, Donghyun Joo

UT GSBS Dissertations and Theses (Open Access)

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine that plays a role in various cellular processes such as proliferation, differentiation (mainly through NF-κB signaling) and death (via apoptosis signaling). Recently, linear ubiquitination by LUBAC (linear ubiquitin chain assembly complex) was reported to have a regulatory function in TNF-α mediated NF-κB activation. Although LUBAC is suggested to control not only NF-kB signaling but also the apoptosis pathway, the precise mechanism of apoptosis regulation remains unknown. Moreover, NF-κB and apoptosis pathways have opposed but fundamental functions for various cellular processes. Although these two pathways actively interplay to balance the death and survival, the ...


Regulation Of Cell Adhesion By The Ferm Proteins, Ptpn14 And Merlin, Patty Dimarco Hewitt May 2015

Regulation Of Cell Adhesion By The Ferm Proteins, Ptpn14 And Merlin, Patty Dimarco Hewitt

UT GSBS Dissertations and Theses (Open Access)

Cell-cell adhesion is critical for the control of tissue organization and homeostasis. A family of proteins that regulate cell-cell adhesions is the FERM (4.1 protein, Ezrin, Radixin, Moesin) domain-containing proteins.One FERM domain protein, the non-receptor tyrosine phosphatase PTPN14, is mutated or deleted in several human cancers suggesting that it may be involved in tumor development and/or progression. Additionally, the loss of the FERM domain protein Merlin is associated with tumor development and metastasis.Both PTPN14 and Merlin have been shown to localize and possibly regulate adherens junction (AJ) functions. This work sought to determine ...


Dna Polymerase Θ (Polq) And The Cellular Defense Against Dna Damage, Matthew J. Yousefzadeh May 2015

Dna Polymerase Θ (Polq) And The Cellular Defense Against Dna Damage, Matthew J. Yousefzadeh

UT GSBS Dissertations and Theses (Open Access)

In mammalian cells, DNA polymerase θ (POLQ) is an unusual specialized DNA polymerase whose in vivo function is under active investigation. The protein is comprised of an N-terminal helicase-like domain, a C-terminal DNA polymerase domain, and a large central domain that spans between the two. This arrangement is also found in the Drosophila Mus308 protein, which helps confer resistance to DNA interstrand crosslinking agents. Homologs of POLQ and Mus308 are found in eukaryotes, including plants, but a comparison of phenotypes suggests that not all of these genes are functional orthologs. Flies with defective Mus308 are sensitive to DNA interstrand crosslinking ...


Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee Dec 2014

Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee

UT GSBS Dissertations and Theses (Open Access)

Cancer cells display dramatic alterations in cellular metabolism to meet their needs of increased growth and proliferation. In the last decade, cancer research has brought these pathways into focus, and one emerging issue that has come to attention is that many oncogenes and tumor-suppressors are intimately linked to metabolic regulation (Jones and Thompson, 2009). One of the key tumor-suppressors involved in metabolism is Liver Kinase B1 (LKB1). LKB1 is the major upstream kinase of the evolutionarily conserved metabolic sensor—AMP-activated protein kinase (AMPK). Activation of the LKB1/AMPK pathway provides a survival advantage for cells under energy stress. LKB1 forms ...


P120-Catenin Regulates Rest And Corest, And Modulates Mouse Embryonic Stem Cell Differentiation, Moonsup Lee Dec 2014

P120-Catenin Regulates Rest And Corest, And Modulates Mouse Embryonic Stem Cell Differentiation, Moonsup Lee

UT GSBS Dissertations and Theses (Open Access)

The canonical-Wnt pathway and beta-catenin have been extensively studied to determine their contributions to stem cell biology, but less is known about p120-catenin in the nuclear compartment. P120 is developmentally required as a consequence of its biochemical and functional interactions with cadherins, small-GTPases and transcriptional regulators. We report here that p120-catenin binds to and negatively regulates REST and CoREST, that others have indicated form a repressive complex having diverse key roles in developmental and pathologic gene regulation. We thus provide the first evidence for a direct upstream modulator of REST/CoREST function. Using mouse embryonic stem cells (mESCs), mammalian cell ...


Roles For B-Raf Kinase In The Specific Regulation Of Α4Β1 Integrin In T Cells, Wells S. Brown Aug 2014

Roles For B-Raf Kinase In The Specific Regulation Of Α4Β1 Integrin In T Cells, Wells S. Brown

UT GSBS Dissertations and Theses (Open Access)

The regulation of integrin-mediated adhesion is of vital importance to adaptive and innate immunity. Integrins are versatile proteins and mediate T cell migration and trafficking by binding to ECM or other cells, as well as initiating intracellular signaling cascades promoting survival or activation. The mitogen activated-protein kinase (MAPK) pathway is known to be downstream from integrins and regulate survival, differentiation, and motility. However, secondary roles for canonical MAPK pathway members are being discovered. We show chemical inhibition of RAF by Sorafenib or shRNA-mediated knockdown of B-Raf reduces T cell resistance to shear stress to α4β1 integrin ligands vascular cell adhesion ...


Egfr Modulates Microrna Maturation In Response To Hypoxia Through Phosphorylation Of Argonaute2, Jia Shen Aug 2014

Egfr Modulates Microrna Maturation In Response To Hypoxia Through Phosphorylation Of Argonaute2, Jia Shen

UT GSBS Dissertations and Theses (Open Access)

MicroRNAs (miRNAs) are generated by two-step processing to yield small RNAs that negatively regulate target gene expression at posttranscriptional level. Deregulation of miRNAs has been linked to diverse pathological processes, including cancer. Recent studies have also implicated miRNAs in regulatory roles to cope with a spectrum of stresses, such as hypoxia, which is frequently encountered in the poorly angiogenic core of a solid tumor. However, the upstream regulators of miRNA biogenesis machineries remain obscure, raising the question of how tumor cells efficiently coordinate and impose specificity on miRNA expression and function in response to stresses. Here, we show that EGFR ...


Energy Stress Causes Chaperones To Assemble Into Cytoplasmic Complexes, Kimberly J. Cope Aug 2014

Energy Stress Causes Chaperones To Assemble Into Cytoplasmic Complexes, Kimberly J. Cope

UT GSBS Dissertations and Theses (Open Access)

The majority of proteins require molecular chaperones to assist their folding into tertiary and quaternary structures. Certain stresses can compromise the weak hydrophobic forces responsible for these structures and lead to protein unfolding, misfolding, and aggregation. Aggregates of proteins are hallmarks of devastating diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. Fortunately, bacteria, plants, and fungi have a potent disaggregase, named Hsp104 in Saccharomyces cerevisiae. Recently, heat-induced aggregates, termed Q-bodies, were found to contain three molecular chaperones: Hsp70, Hsp104, and Hsp42. Their coalescence from small puncta into larger inclusions required Hsp104. During glucose deprivation, a stress that ...


Characterization Of Ftsa-Ftsn Interaction During Escherichia Coli Cell Division, Kimberly.Busiek@Gmail.Com K. Busiek May 2014

Characterization Of Ftsa-Ftsn Interaction During Escherichia Coli Cell Division, Kimberly.Busiek@Gmail.Com K. Busiek

UT GSBS Dissertations and Theses (Open Access)

Division of a bacterial cell into two equal daughter cells requires precise assembly and constriction of the division machinery, or divisome. The Escherichia coli divisome includes nearly a dozen essential cell division proteins that assemble at midcell between segregating sister chromosomes. FtsZ, a homolog of eukaryotic tubulin, is the first essential cell division protein to localize at midcell where it polymerizes into a ring-shaped scaffold (Z ring). Establishment of the Z ring is required for recruitment of downstream cell division proteins including FtsA, a cytoplasmic protein that tethers the Z ring to the inner membrane. Following localization of FtsA and ...


Functional Analysis Of Cytosolic Hsp70 Nucleotide Exchange Factor Networks In Yeast, Jennifer Lynn Abrams May 2014

Functional Analysis Of Cytosolic Hsp70 Nucleotide Exchange Factor Networks In Yeast, Jennifer Lynn Abrams

UT GSBS Dissertations and Theses (Open Access)

The Hsp70 class of molecular chaperones play critical roles in protein homeostasis via an ATP-dependent folding cycle. Cytosolic Hsp70s in the budding yeast Saccharomyces cerevisiae, Ssa and Ssb, interact with up to three distinct nucleotide exchange factors (NEFs) homologous to human counterparts; Sse1/Sse2/HSP110, Fes1/HspBP1, and Snl1/Bag1. In an effort to understand the differential functional contributions of the cytosolic NEFs to protein homeostasis (“proteostasis”), I carried out comparative genetic, biochemical and cell biological analyses. For these studies, I developed protocols to monitor protein disaggregation and reactivation in a near real-time coupled assay that revealed the importance of ...