Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Nanoscale Organization Of The Small Gtpase Rac1, Kelsey Maxwell May 2018

Nanoscale Organization Of The Small Gtpase Rac1, Kelsey Maxwell

UT GSBS Dissertations and Theses (Open Access)

Rac1 is a small, guanine-nucleotide binding protein that cycles between an inactive GDP-bound and active GTP-bound state to regulate actin-mediated motility, migration, and adhesion. Plasma membrane (PM) localization is essential for its biological activity. Rac1 PM targeting is directed by a C-terminal membrane anchor that encompasses a geranylgeranyl-cysteine-methyl-ester, palmitoyl, and a polybasic domain (PBD) of contiguous lysine and arginine residues. Using high-resolution imaging combined with spatial mapping analysis, I found that Rac1 forms nanoclusters on the PM. Cycling between the GTP- and GDP-bound states, Rac1 forms nanoclusters that are non-overlapping, consequently undergoing guanine nucleotide-dependent spatial segregation. I further found that ...


Fret-Based Investigations Of The Structure-Function Relationships In The Nmda Receptor, Drew M. Dolino May 2017

Fret-Based Investigations Of The Structure-Function Relationships In The Nmda Receptor, Drew M. Dolino

UT GSBS Dissertations and Theses (Open Access)

The N-methyl-D-aspartate (NMDA) receptor is one member of a class of proteins known as the ionotropic glutamate receptors. Ionotropic glutamate receptors mediate the majority of excitatory neurotransmission in the central nervous system, with the NMDA receptor standing out among these receptors for its requirement of a co-agonist, its magnesium-block-based coincidence detection, its slow kinetics, its calcium permeability, its allosteric modulation, and its especially important functional roles in synaptic plasticity, excitotoxicity, and more. In recent years, a wealth of structural information has come about describing endpoint structures to high resolution, but such structures are unable to fully resolve the movements ...


Prophylactic Cranial Irradiation Reduces The Incidence Of Brain Metastasis In A Mouse Model Of Metastatic Breast Cancer, Daniel L. Smith Aug 2015

Prophylactic Cranial Irradiation Reduces The Incidence Of Brain Metastasis In A Mouse Model Of Metastatic Breast Cancer, Daniel L. Smith

UT GSBS Dissertations and Theses (Open Access)

Prophylactic cranial irradiation (PCI) is a preventative whole-brain irradiation technique used to reduce the incidence of brain metastasis and improve overall survival in select patients with small cell lung cancer and acute lymphoblastic leukemia. A population of breast cancer patients – stage IV, HER2+ or triple-negative – has emerged as having a high risk of developing brain metastases. Because only 10-20% of breast cancer patients diagnosed with brain metastases survive longer than one year, in this high-risk population the benefit of PCI – potential for reduced incidence of brain metastasis and improved overall survival – may outweigh the risks – radiation toxicity. The objective of ...


Gating Mechanisms Of The Canonical Trp Channel Isoform Trpc4, Dhananjay P. Thakur Aug 2015

Gating Mechanisms Of The Canonical Trp Channel Isoform Trpc4, Dhananjay P. Thakur

UT GSBS Dissertations and Theses (Open Access)

Non-selective cation channels formed by Transient Receptor Potential Canonical (TRPC) proteins play important roles in regulatory and pathophysiological processes. These channels are known to be activated downstream from phospholipase C (PLC) signaling. However, the mechanism by which the PLC pathway activates TRPC4/C5 remains unclear. Uniquely, TRPC4 is maximally activated only when two separate G protein pathways, Gq/11 and Gi/o, are co-stimulated, making it a coincidence detector of Gq/11- and Gi/o -coupled receptor activation. Using HEK293 cells co-expressing mouse TRPC4β and selected G protein-coupled receptors, I observed that coincident stimulation of G ...


Computational Modeling Of Rna-Small Molecule And Rna-Protein Interactions, Lu Chen Aug 2015

Computational Modeling Of Rna-Small Molecule And Rna-Protein Interactions, Lu Chen

UT GSBS Dissertations and Theses (Open Access)

The past decade has witnessed an era of RNA biology; despite the considerable discoveries nowadays, challenges still remain when one aims to screen RNA-interacting small molecule or RNA-interacting protein. These challenges imply an immediate need for cost-efficient while predictive computational tools capable of generating insightful hypotheses to discover novel RNA-interacting small molecule or RNA-interacting protein. Thus, we implemented novel computational models in this dissertation to predict RNA-ligand interactions (Chapter 1) and RNA-protein interactions (Chapter 2).

Targeting RNA has not garnered comparable interest as protein, and is restricted by lack of computational tools for structure-based drug design. To test the potential ...


Swarna Ramaswamy_Thesis, Swarna S. Ramaswamy Dec 2014

Swarna Ramaswamy_Thesis, Swarna S. Ramaswamy

UT GSBS Dissertations and Theses (Open Access)

STRUCTURAL INVESTIGATIONS OF LIGAND GATED ION CHANNELS

Swarna Ramaswamy, B.S

Advisor: Vasanthi Jayaraman, Ph.D.

Ion channels form an integral part of membrane proteins. In the nervous system including the central and the peripheral nervous system, ligand gated ion channels form a very important part of intercellular communications. They receive chemical signals and convert them to electrical signal, mainly by allowing ion passage across the cell membrane. Ion passage also translates into downstream signaling events. Faithful translation of these signals and transmittance is crucial for several physiological functions, implying that irregular ion channel function could lead to serious consequences ...


Determining The Genotype-Phenotype Connection In Synthetic Inducible Gene Expression Systems, Rhys M. Adams May 2012

Determining The Genotype-Phenotype Connection In Synthetic Inducible Gene Expression Systems, Rhys M. Adams

UT GSBS Dissertations and Theses (Open Access)

Introduction Gene expression is an important process whereby the genotype controls an individual cell’s phenotype. However, even genetically identical cells display a variety of phenotypes, which may be attributed to differences in their environment. Yet, even after controlling for these two factors, individual phenotypes still diverge due to noisy gene expression. Synthetic gene expression systems allow investigators to isolate, control, and measure the effects of noise on cell phenotypes. I used mathematical and computational methods to design, study, and predict the behavior of synthetic gene expression systems in S. cerevisiae, which were affected by noise.

Methods I created probabilistic ...


Conformational Changes In The Extracellular Domain Of Glutamate Receptors, Anu Rambhadran Dec 2011

Conformational Changes In The Extracellular Domain Of Glutamate Receptors, Anu Rambhadran

UT GSBS Dissertations and Theses (Open Access)

The family of membrane protein called glutamate receptors play an important role in the central nervous system in mediating signaling between neurons. Glutamate receptors are involved in the elaborate game that nerve cells play with each other in order to control movement, memory, and learning.

Neurons achieve this communication by rapidly converting electrical signals into chemical signals and then converting them back into electrical signals. To propagate an electrical impulse, neurons in the brain launch bursts of neurotransmitter molecules like glutamate at the junction between neurons, called the synapse. Glutamate receptors are found lodged in the membranes of the post-synaptic ...