Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Open Dartmouth: Faculty Open Access Scholarship

Base sequence

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

N-Terminal Domain Of Vacuolar Snare Vam7p Promotes Trans-Snare Complex Assembly, Hao Xu, William T. Wickner Sep 2012

N-Terminal Domain Of Vacuolar Snare Vam7p Promotes Trans-Snare Complex Assembly, Hao Xu, William T. Wickner

Open Dartmouth: Faculty Open Access Scholarship

SNARE-dependent membrane fusion in eukaryotic cells requires that the heptad-repeat SNARE domains from R- and Q-SNAREs, anchored to apposed membranes, assemble into four-helix coiled-coil bundles. In addition to their SNARE and transmembrane domains, most SNAREs have N-terminal domains (N-domains), although their functions are unclear. The N-domain of the yeast vacuolar Qc-SNARE Vam7p is a binding partner for the homotypic fusion and vacuole protein sorting complex (a master regulator of vacuole fusion) and has Phox homology, providing a phosphatidylinositol 3-phosphate (PI3P)-specific membrane anchor. We now report that this Vam7p N-domain has yet another role, one that does not depend on ...


Live-Cell Monitoring Of Periodic Gene Expression In Synchronous Human Cells Identifies Forkhead Genes Involved In Cell Cycle Control, Gavin D. Grant, Joshua Gamsby, Viktor Martyanov, Lionel Brooks, Lacy K. George, J. Matthew Mahoney, Jennifer J. Loros, Jay C. Dunlap, Michael L. Whitfield Jun 2012

Live-Cell Monitoring Of Periodic Gene Expression In Synchronous Human Cells Identifies Forkhead Genes Involved In Cell Cycle Control, Gavin D. Grant, Joshua Gamsby, Viktor Martyanov, Lionel Brooks, Lacy K. George, J. Matthew Mahoney, Jennifer J. Loros, Jay C. Dunlap, Michael L. Whitfield

Open Dartmouth: Faculty Open Access Scholarship

We developed a system to monitor periodic luciferase activity from cell cycle-regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle-regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel ...


Circadian Clock Locus Frequency: Protein Encoded By A Single Open Reading Frame Defines Period Length And Temperature Compensation., Benjamin D. Aronson, Keith A. Johnson, Jay C. Dunlap Aug 1994

Circadian Clock Locus Frequency: Protein Encoded By A Single Open Reading Frame Defines Period Length And Temperature Compensation., Benjamin D. Aronson, Keith A. Johnson, Jay C. Dunlap

Open Dartmouth: Faculty Open Access Scholarship

The frequency (frq) locus encodes a key component, a state variable, in a cellular oscillator generating circadian rhythmicity. Two transcripts have been mapped to this region, and data presented here are consistent with the existence of a third transcript. Analysis of cDNA clones and clock mutants from this region focuses attention on one transcript encoding a protein. FRQ, which is a central clock component: (i) mutations in all of the semidominant frq alleles are the result of single amino acid substitutions and map to the open reading frame (ORF) encoding FRQ; (ii) deletion of this ORF, or a frameshift mutation ...


Differential Regulation Of Collagenase Gene Expression By Retinoic Acid Receptors--Alpha, Beta And Gamma, Luying Pan, Stephen H. Chamberlain, David T. Auble, Constance E. Brinckerhoff Jun 1992

Differential Regulation Of Collagenase Gene Expression By Retinoic Acid Receptors--Alpha, Beta And Gamma, Luying Pan, Stephen H. Chamberlain, David T. Auble, Constance E. Brinckerhoff

Open Dartmouth: Faculty Open Access Scholarship

The mechanisms involved in retinoic acid (RA)-mediated regulation of the collagenase gene in a rabbit synovial fibroblast cell line (HIG82) were investigated. When HIG82 cells are cotransfected with expression vectors containing cDNAs for retinoic acid receptor (RAR) α1, β2, or γ1 and collagenase promoter-driven CAT reporter constructs, only RAR-γ1 represses basal CAT expression upon RA treatment, while RAR-α1, β2, and γ1 all suppress phorbol-induced CAT expression. Thus, transcriptional regulation of collagenase by RA is mediated by RARs in an RAR-type specific manner. Using mutatlonal and deletional analysis, we find that interaction between elements within 182 bp collagenase promoter plays ...