Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Open Dartmouth: Faculty Open Access Scholarship

2006

Post-translational

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Dictyostelium Myosin-Ie Is A Fast Molecular Motor Involved In Phagocytosis, Ulrike Durrwang, Setsuko Fujita-Becker, Muriel Erent, F. Jon Kull Oct 2006

Dictyostelium Myosin-Ie Is A Fast Molecular Motor Involved In Phagocytosis, Ulrike Durrwang, Setsuko Fujita-Becker, Muriel Erent, F. Jon Kull

Open Dartmouth: Faculty Open Access Scholarship

Class I myosins are single-headed motor proteins, implicated in various motile processes including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Here we describe the cellular localization of myosin-IE and its role in the phagocytic uptake of solid particles and cells. A complete analysis of the kinetic and motor properties of Dictyostelium discoideum myosin-IE was achieved by the use of motor domain constructs with artificial lever arms. Class I myosins belonging to subclass IC like myosin-IE are thought to be tuned for tension maintenance or stress sensing. In contrast to this prediction, our results show myosin-IE to be a fast motor ...


Erv26p Directs Pro-Alkaline Phosphatase Into Endoplasmic Reticulum–Derived Coat Protein Complex Ii Transport Vesicles, Catherine A. Bue, Christine M. Bentivoglio, Charles Barlowe Sep 2006

Erv26p Directs Pro-Alkaline Phosphatase Into Endoplasmic Reticulum–Derived Coat Protein Complex Ii Transport Vesicles, Catherine A. Bue, Christine M. Bentivoglio, Charles Barlowe

Open Dartmouth: Faculty Open Access Scholarship

Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Δ mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP ...