Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Structure And Mechanism Of Mycobacterial Topoisomerase I, Nan Cao May 2018

Structure And Mechanism Of Mycobacterial Topoisomerase I, Nan Cao

FIU Electronic Theses and Dissertations

The enzyme DNA topoisomerase I is an essential enzyme that plays an important role in eukaryotic and prokaryotic cellular processes such as DNA replication, transcription, recombination and repair. Mycobacterium tuberculosistopoisomerase I (MtTOP1) is a validated drug target for antituberculosis treatment. Mycobacterial topoisomerase I regulates the topological constraints in chromosomes and helps in maintaining the growth of mycobacteria. The N- terminal domain (NTD) of mycobacterial topoisomerase I contains conserved catalytic domains that along with the active site Tyrosine are involved in cleaving and rejoining a single strand of DNA. Magnesium is required in DNA cleavage activity of type IA topoisomerases ...


Mechanisms Of Arsenic Detoxification And Resistance, Jitesh Kannan Pillai Nov 2014

Mechanisms Of Arsenic Detoxification And Resistance, Jitesh Kannan Pillai

FIU Electronic Theses and Dissertations

Arsenic is a ubiquitous environmental toxic substance. As a consequence of continual exposure to arsenic, nearly every organism, from Escherichia coli to humans have evolved arsenic detoxification pathways. One of the pathways is extrusion of arsenic from inside the cells, thereby conferring resistance. The R773 arsRDABC operon in E. coli encodes an ArsAB efflux pump that confers resistance to arsenite. ArsA is the catalytic subunit of the pump, while ArsB forms the oxyanion conducting pathway. ArsD is an arsenite metallochaperone that binds arsenite and transfers it to ArsA. The interaction of ArsA and ArsD allows for resistance to As(III ...


Oxidative Dna Damage Modulates Trinucleotide Repeat Instability Via Dna Base Excision Repair, Meng Xu Sep 2014

Oxidative Dna Damage Modulates Trinucleotide Repeat Instability Via Dna Base Excision Repair, Meng Xu

FIU Electronic Theses and Dissertations

Trinucleotide repeat (TNR) expansion is the cause of more than 40 types of human neurodegenerative diseases such as Huntington’s disease. Recent studies have linked TNR expansion with oxidative DNA damage and base excision repair (BER). In this research, we provided the first evidence that oxidative DNA damage can induce CAG repeat deletion/contraction via BER. We found that BER of an oxidized DNA base lesion, 8-oxoguanine in a CAG repeat tract, resulted in the formation of a CTG hairpin at the template strand. DNA polymerase β (pol b) then skipped over the hairpin creating a 5’-flap that was ...