Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Reclaiming The Efficacy Of Β-Lactam–Β-Lactamase Inhibitor Combinations: Avibactam Restores The Susceptibility Of Cmy-2-Producing Escherichia Coli To Ceftazidime, Krisztina M. Papp-Wallace, Marisa L. Winkler, Julian A. Gatta, Magdalena A. Taracila, Sujatha Chilakala, Yan Xu, J. Kristie Johnson, Robert A. Bonomo May 2014

Reclaiming The Efficacy Of Β-Lactam–Β-Lactamase Inhibitor Combinations: Avibactam Restores The Susceptibility Of Cmy-2-Producing Escherichia Coli To Ceftazidime, Krisztina M. Papp-Wallace, Marisa L. Winkler, Julian A. Gatta, Magdalena A. Taracila, Sujatha Chilakala, Yan Xu, J. Kristie Johnson, Robert A. Bonomo

Chemistry Faculty Publications

CMY-2 is a plasmid-encoded Ambler class C cephalosporinase that is widely disseminated in Enterobacteriaceae and is responsible for expanded-spectrum cephalosporin resistance. As a result of resistance to both ceftazidime and β-lactamase inhibitors in strains carrying blaCMY, novel β-lactam–β-lactamase inhibitor combinations are sought to combat this significant threat to β-lactam therapy. Avibactam is a bridged diazabicyclo [3.2.1]octanone non-β-lactam β-lactamase inhibitor in clinical development that reversibly inactivates serine β-lactamases. To define the spectrum of activity of ceftazidime-avibactam, we tested the susceptibilities of Escherichia coli clinical isolates that carry blaCMY-2 or blaCMY-69 and investigated the inactivation kinetics of CMY-2 ...


A Loose Domain Swapping Organization Confers A Remarkable Stability To The Dimeric Structure Of The Arginine Binding Protein From Thermotoga Maritima, Alessia Ruggiero, Jonathan D. Dattelbaum, Maria Staiano, Rita Berisio, Sabato D'Auria, Luigi Vitagliano Jan 2014

A Loose Domain Swapping Organization Confers A Remarkable Stability To The Dimeric Structure Of The Arginine Binding Protein From Thermotoga Maritima, Alessia Ruggiero, Jonathan D. Dattelbaum, Maria Staiano, Rita Berisio, Sabato D'Auria, Luigi Vitagliano

Chemistry Faculty Publications

The arginine binding protein from Thermatoga maritima (TmArgBP), a substrate binding protein (SBP) involved in the ABC system of solute transport, presents a number of remarkable properties. These include an extraordinary stability to temperature and chemical denaturants and the tendency to form multimeric structures, an uncommon feature among SBPs involved in solute transport. Here we report a biophysical and structural characterization of the TmArgBP dimer. Our data indicate that the dimer of the protein is endowed with a remarkable stability since its full dissociation requires high temperature as well as SDS and urea at high concentrations. In order to elucidate ...